
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2018

A software architecture for cloud-based text
annotation: The AFLEX Tag Tool Architecture
(ATTA)
Mahmood Ramezani
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ramezani, Mahmood, "A software architecture for cloud-based text annotation: The AFLEX Tag Tool Architecture (ATTA)" (2018).
Graduate Theses and Dissertations. 16863.
https://lib.dr.iastate.edu/etd/16863

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16863&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16863&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F16863&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F16863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16863?utm_source=lib.dr.iastate.edu%2Fetd%2F16863&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

A software architecture for cloud-based text annotation:

The AFLEX Tag Tool Architecture (ATTA)

by

Mahmood Ramezani

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Human Computer Interaction

Program of Study Committee:

Stephen Gilbert, Major Professor

Annette O’Connor

Elena Cotos

The student author, whose presentation of the scholarship herein was approved by the

program of study committee, is solely responsible for the content of this thesis. The

Graduate College will ensure this thesis is globally accessible and will not permit

alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2018

Copyright © Mahmood Ramezani, 2018. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES ... iv

LIST OF TABLES ... vi

NOMENCLATURE ... vii

ACKNOWLEDGMENTS ... viii

ABSTRACT ... ix

CHAPTER 1. INTRODUCTION ... 1
Purpose of work ... 1

Motivation ... 1
Systematic Reviews & The AFLEX Project .. 3

Software layers of ATTA .. 5
Evaluation Criteria ... 6

Multi-User Support... 7

Conflict Resolution... 7
User-Centric UI Design .. 8

Input Filetype Support .. 8
Data Storage Architecture .. 8

Output Filetype Support ... 9
Extensibility.. 9

Thesis Organization ... 10

CHAPTER 2. BACKGROUND ... 11
Introduction ... 11

AI in Publishing ... 12
AFLEX .. 13

Machine Learning in AFLEX ... 14

AFLEX Tag Tool Architecture (ATTA) .. 16

CHAPTER 3. METHODS .. 19

ATTA Front-End Development ... 19
Planning .. 19
User Needs Discovery .. 20
Design ... 21

UML modeling .. 22

Implementation ... 24
Documentation .. 24

Testing .. 25
Maintenance ... 26
ATTA Development Summary .. 26

www.manaraa.com

iii

CHAPTER 4. ATTA TOOLS DEVELOPMENT .. 28

ATTA Tools Planning and Design .. 28

AFLEX interviews ... 28
Stakeholders of AFLEX ... 29

Expert reviewers ... 29
Linguists .. 31
System admins .. 33

Machine learning researchers .. 33
AFLEX Use Case ... 34
User Stories .. 35
Wireframes ... 37
High-Fidelity Prototypes .. 38

Version Control .. 38

Development/Production Environment .. 38
ATTA Database .. 39

AFLEX Tag Tool Architecture Development ... 41

User Management... 42
Tag Tool 1 ... 43
Tag Tool 2 ... 45

Tag Tool 2 Review Tool .. 47
De-Duplicator .. 48

Checklist Tool .. 50
File format conversion .. 53

AFLEX Tag Tool Maintenance ... 54

Documentation ... 54

CHAPTER 5. DISCUSSION .. 55
Development .. 55

Sustainable Design In ATTA ... 55

User interface design considerations ... 56
Challenges ... 56

The .pdf File Type .. 56

Evaluation .. 57
Future Work ... 58

Machine Learning Implementation .. 58
Data exchange pipeline ... 58

AI-Assisted Checklist Tool .. 59

UX Research on Tool Usability ... 60

REFERENCES ... 61

www.manaraa.com

iv

LIST OF FIGURES

Page

Figure 1-1 AFLEX Tag Tool Architecture usage demonstration. Users review and

tag excerpts of multiple documents. Their results are stored and passed

to others or serve as training data for machine learning algorithms

which, in the future, will automatically review and tag documents. 1

Figure 1-2 Layers of the AFLEX Tag Tool Architecture (ATTA). Data Access

Layer (DAC) is the farthest from the user and Presentation Layer is the

layer that user interacts with. Business Layer connects the other two

layers and all the program logic is in this layer .. 6

Figure 2-1 Steps for creating a systematic review process (Tsafnat et al., 2014) 15

Figure 3-1 Spiral SDLC (Software Development Life Cycle) model that is used in

ATTA ... 20

Figure 3-2 A sample use case diagram ... 23

Figure 4-1 The use case diagram of AFLEX tag tools ... 35

Figure 4-2 Pictures illustrating whiteboarding techniques during the interview

sessions. .. 36

Figure 4-3 A wireframe of ATTA that was used to improve the efficiency of UI

design .. 37

Figure 4-4 The ATTA database schema ... 40

Figure 4-5 AFLEX authentication system using Google services 43

Figure 4-6 Screenshot of Tag Tool 1 designed and developed for expert reviewers. 44

Figure 4-7 Comment box and work history module for Tag Tool 1 (left), and work

history deletion confirmation message (right). ... 45

Figure 4-8 Tag Tool 2, which is designed for linguists. ... 47

Figure 4-9 A screenshot of the Review Tool, which enables linguists to verify data. 48

Figure 4-10 A diagram of the de-duplicator module in relation to ATTA 49

Figure 4-11 A screenshot of the Checklist Tool ... 52

www.manaraa.com

v

Figure 4-12 A screen shot of Checklist Tool output, a PDF file. 53

Figure 5-1 A diagram of the communication between an ATTA tool and an AFLEX

ML module. .. 59

www.manaraa.com

vi

LIST OF TABLES

Page

Table 4-1 User requirements for expert reviewers (Ramezani et al., 2017) 30

Table 4-2 User requirements of linguists (Ramezani et al., 2017) 32

Table 4-3 System admin requirement for ATTA .. 33

Table 4-4 Machine learning researchers' requirements for ATTA 34

Table 5-1 A comparison between AFLEX tag tools and similar tools in the

literature. N/A indicates that not enough information was available for

evaluation. .. 57

www.manaraa.com

vii

NOMENCLATURE

AFLEX Automated Functional Language Extraction

 ATTA AFLEX Tag Tool Architecture

 GUI Graphical User Interface

 SR Systematic Review

 UI User Interface

 UX User Experience

www.manaraa.com

viii

ACKNOWLEDGMENTS

I would like to thank my committee chair and my advisor, Dr. Stephen Gilbert,

and my committee members, Dr. Annette O’Conner, and Dr. Elena Cotos, for their

guidance and support throughout the course of this research.

In addition, I would also like to thank my spouse who has always been supportive,

Vijay Kalivarapu for his support and hard work on AFLEX, Glen Galvin who helped a

lot with server configuration and security concerns, and the rest of AFLEX team,

including Nirav Kamdar, Jingyu Liu. Also, I thank Elizabeth Lee, whose constructive

feedback helped with this project. I would also like to thank the Center for

Communication Excellence (CCE) at Iowa State University, whose consultants helped

me with writing this document. Finally, I would like to thank the HCI faculty and staff

for making my time at Iowa State University a wonderful experience.

www.manaraa.com

ix

ABSTRACT

Text annotation is a valuable method of adding metadata to an existing text or

document. However, there is no standard text annotation tool across disciplines, in part

because of the variety of disciplinary needs. This document presents the AFLEX Tag

Tool Architecture (ATTA), a modular software system to allow the development of text

annotation tools across disciplines that vary in user interface according the needs of the

disciplinary users, but share a common technical back end, ATTA.

This research describes the development of ATTA, along with the development of

four different ATTA-based software tools related to text annotation that meet the needs

of different stakeholders: Tag Tool 1, Tag Tool 2, the Review Tool, and the Checklist

Tool. All tools are web-based applications that store data to an online database. ATTA-

based tools have been found to be useful not only for performing text annotation as its

own end goal, but also as a method of data collection for training machine learning

classifiers that perform automated text analysis.

.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Purpose of work

The primary goal of this work is to develop a modular software architecture for text

annotation that can be used across disciplines with maximum compatibility and minimal

software requirements. While people may be familiar with the ability to add comments to

Microsoft Word documents or PDF files, forms of text annotation, these tools do not meet

the above goals. This document describes in detail the motivation for this goal, steps taken to

meet it, and the final resulting software architecture and tools, which offer an efficient way of

collecting data for automated systematic review. The tools are also responsible for exporting

data in the requested format with specific desired structure. This architecture was developed

as part of a project called AFLEX (Automatic Functional Language Extraction), which is

explained in more detail in Chapter 2. Thus, this paper will refer to the AFLEX Tag Tool

Architecture (ATTA). The usage of ATTA is depicted in Figure 1-1.

Figure 1-1 AFLEX Tag Tool Architecture usage demonstration. Users review and tag

excerpts of multiple documents. Their results are stored and passed to others or serve as

training data for machine learning algorithms which, in the future, will automatically review

and tag documents.

Motivation

To conduct research on a subject, it is critical to know what has already been done on

that topic by other people. Conducting new research risks wasting expense and time if it does

www.manaraa.com

2

not use results from previous research. However, it can be difficult to keep track of the

previous research on a topic. Considering the large number of research publications per year,

approximately 400,000 in 2015 in Elsevier journals alone (Reller, 2016), significant effort is

required to find relevant information about a specific subject and to manage it.

Since the amount of the information is a lot, one solution to manage the information

is to summarize the reports and make note of the most important parts of the different texts.

This approach has the potential to make knowledge sharing easier and information

management more efficient. This technique, which is known as text annotation, has existed

for a quite long time.

Historically, medieval authors of manuscripts used margins of manuscripts or the

interlinear spaces as a forum to debate parts of the text, or to share knowledge (Wolfe, 2002).

This practice was a critical part of medieval reading so that annotations were usually

transcribed along with the original text.

For the purpose of this research, the term “tagging” is used as a subcategory of

annotation. Tagging is a method of preparing unstructured text and documents for data

analysis and pattern recognition. Text tagging usually involves associating predefined

machine-readable labels known as tags, with a specific part of the original text. A row of

figures from company's income statement might be tagged as “assets,” for example. A string

of text transcribed into a medical chart might be tagged as “diagnosis.” The tags can be used

for indexing texts, categorizing them, or adding metadata to manuscripts. The important

point is that these tags are usually discipline-specific. For example, the tags that are used by

medical researchers are likely quite different from linguists, since tags are typically related to

www.manaraa.com

3

the specific topics of interest within a discipline. A modular tool for text annotation should be

able to support tagging from multiple disciplines.

Not only are the tags themselves different across disciplines, but also the way the

annotation is done can be quite different. For instance, some expert reviewers might need to

select a single excerpt of the text and assign a tag to that part of the text. This is a “one to

one” mapping, e.g., selecting the title of an article and tagging it “title.” In other contexts,

e.g., linguistics, people may want to choose a tag for a language pattern that recurs and select

as many instances as they find in the text that matches that specific pattern. This is a “one to

many” mapping, e.g., the tag “prepositional phrase” may apply to many excerpts. There may

also be “many to many” mappings, in which multiple text excerpts combine to serve as

evidence of several attributes of the paper. A modular text annotation tool should be able to

support multiple text annotation behaviors of users.

Systematic Reviews & The AFLEX Project

Systematic reviews are a research strategy that has been widely accepted and are used

to consolidate results from multiple studies within a specific scope, usually to answer a

research question (Gough & Elbourne, 2002). Systematic reviews often involve text

annotation (Thomas, McNaught, & Ananiadou, 2011). Using systematic reviews, the process

of reviewing a large number of research articles can be done in a structured way. Systematic

reviews introduce a transparent and scientific process which is replicable (Tranfield, Denyer,

& Smart, 2003). The systematic review process can be done manually or be assisted by

automation. The partial automation of systematic reviews is further described in Chapter 2.

The current research arises from efforts on a project called Automated Functional

Language Extraction (AFLEX), a research effort focused on getting artificial intelligence

(AI) further involved into the systematic review process. AI-assisted systematic review tools,

www.manaraa.com

4

for example, might be able to read thousands of research articles and select only the ones that

have specific characteristics that are recognizable by the AI system. To have AI-assisted

systematic reviews, the AI algorithm first needs to be trained with a large amount of data.

Generally, the more data is fed to the algorithm, the more accurate its decisions are (Banko &

Brill, 2001). In the case of systematic reviews, these training data would consist of annotated

texts with the desired characteristics manually tagged by experts with the desired

characteristics (O’Connor, Tsafnat, Gilbert, Thayer, & Wolfe, 2018). This need provides the

motivation for the current research, developing a modular and flexible text annotation

system. ATTA allows reliable collection of training data for the AI algorithm.

Based on the literature review in Chapter 2, there is yet another need for ATTA. In

some disciplines, the lack of any standardized tool for text annotation, as Microsoft® Word®

is for word processing, poses a significant problem. The absence of a standard text annotation

tool poses an even greater problem when people from multiple fields need to work to

together and share data between different applications. This variety in content and usage

paradigms poses a non-trivial challenge to design a tool which can be used across multiple

fields. Furthermore, when it comes to the software design, there are many details that should

be considered. The software should address the needs of its users; however, learning the

exact user needs requires tedious effort. The practice of understanding user needs is called

user requirements discovery and is described further below.

This research presents the AFLEX Tag Tool Architecture, which has enabled the

creation of four different tools to be used across multiple stakeholders with the ability of data

exchange among them (Figure 1-2). This architecture consists of three different layers which

can interact with each other through application data exchange pipelines.

www.manaraa.com

5

Software layers of ATTA

The lowest layer, and furthest from user interface (UI), is the data access layer. This

layer is responsible for communicating with the database and provide services to upper

layers. All the data exchange between the application and database occurs in this layer.

Database drivers, service providers, and connection managers are in this layer. In ATTA, the

PHP Data Objects (PDO) extension was used to access the database, which supports Object

Oriented Programming (OOP) paradigm and adds a great level of security to the application.

The second layer is the business layer in which all the application logic occurs. The

business layer is responsible for running the actual code of the application, communicating

with the data access layer to exchange the data, and to provide services to the presentation

layer or UI. ATTA uses PHP Hypertext Preprocessor (PHP) as the scripting language to

function the application.

Finally, the presentation layer of the application, which is the closest to the users,

lives at the highest level of the architecture. The users interact with the application using this

layer. The presentation layer also communicates with the business layer, providing

functionality for the users of the application. There are four different user interfaces designed

and implemented using ATTA: Tag Tool 1, Tag Tool 2, Review Tool, and the Checklist

Tool. Each tool has a different purpose, with different users in mind, though each is related to

the underlying goal of text annotation.

www.manaraa.com

6

Figure 1-2 Layers of the AFLEX Tag Tool Architecture (ATTA). Data Access Layer (DAC)

is the farthest from the user and Presentation Layer is the layer that user interacts with.

Business Layer connects the other two layers and all the program logic is in this layer

Evaluation Criteria

During the development of ATTA, the author created specific criteria that could be

used to evaluate the resulting tools. The criteria included the following design issues, and

each is described in more detail below. While these criteria are not innovative within

themselves, this specific combination of criteria is important to note for ATTA. The author

compiled this list based on user needs, feedback, and interviews that he did during about two

years of development of this project.

• Multi-user support

• Conflict resolution

www.manaraa.com

7

• User-centric UI design

• Input filetype support

• Data storage architecture

• Output filetype support

• Extensibility

Multi-User Support

One of the most important ATTA user needs is the ability to manage each individual

users’ work in the application. The task of annotation is often accomplished by multiple

people. If the application cannot keep track of the users and what they have done, one would

lose the chance of removing biases and normalizing the results, e.g., by comparing and

integrating data from different people’s work. Also, including this feature can have benefits

for the users as well, such as session management and ability to continue their work on an

off-and-on basis over a longer time period.

Sometimes an application is designed for one purpose only and not to be used by

multiple people. The problem in the case of this study is very different. With text annotation,

users believe that they need the same application for different types of text annotation, but

they actually need a different interaction mechanism for each purpose. This variety of user

needs makes the design and development of the application more challenging.

Conflict Resolution

As it is expected in a multi-user system, there may be cases that different users

(reviewers) that worked on the same subject would disagree on a subject. In these cases,

there must be a mechanism to identify the conflicts and be able to come into a final decision.

For the purpose of ATTA, this function was extremely important as without it, the multi-user

www.manaraa.com

8

support wouldn't be functional at all. The dataset that results from ATTA should be clean and

reliable, as the machine learning algorithms will be trained based on it.

User-Centric UI Design

Reviewing is a tedious task that needs hours of continues monotonous work on

different texts. Thus, it could be exhausting if the user needs to deal with a UI that is not

designed based on her needs, as well as the burden of the reviewing task itself. An inefficient

UI design reduces not only the efficiency, but also leads to more human errors as the user

gets more fatigued (Matthews, Davies, Stammers, & Westerman, 2000). On the other hand, a

UI that is designed based on the user needs can be greatly helpful. The learning curve for

using the latter UI is shorter, and the user feels less cognitive load working with it. As a

result, the efficiency increases, and human errors is reduced. ATTA UI design was done

based on its users’ needs that were discovered by close communications between the author

and application users.

Input Filetype Support

In the domain of manuscripts and digital writing, there are different files types, e.g.,

.docx, .tex., .txt., rtf., .pdf, and more. Each of them has its own purposes and structure, and its

specific way of being handled. Designing an application that would deal with text in general

demands supporting multiple filetypes, at least the most common ones. However, the list of

filetypes requiring support is defined by the problem domain and user requirements. In the

case of ATTA, the most common formats for published papers must be covered, which

includes .pdf, .doc, .docx, .odt.

Data Storage Architecture

To create annotation data from a set of texts, one person or a team must spend

numerous hours reading the texts and creating annotations. So, it is crucial to protect the data

www.manaraa.com

9

and ensure data integration. The choices of a data storage system can have a great impact on

the high-level system design. Using a database management system (DBMS) offers

centralized data management, which ensures data integrity and consistency (MacCormick,

2011). It also supports multi-user access to data which is very beneficial for the purpose of

this project.

Another important consideration is the ability to share data in common formats

between applications. If the data are stored in a way that they are not exportable to other

applications, users' interest in that application may be less, because it is not practical for users

to further process their work. ATTA uses a database data storage system to provide data

consistency and integrity.

Output Filetype Support

Another important requirement is that the application can communicate with other

applications. The connection would not happen if the application does not support common

file formats and standard protocols. There are many different applications with different

purposes and architectures. If they do not follow the standard communication protocols, there

is a only a remote chance of finding two different applications that would communicate and

exchange information. Thus, an application that is designed for the purpose of this project

needs to support common file formats for the output, as well as standard communication

protocols. ATTA supports common data exchange protocols and file structures such as

JSON, XML, and CSV.

Extensibility

In the Software Development Life Cycle (SDLC) (Lunn, 2003), maintenance, the last

step in the cycle, plays a critical role. It is important for software to be improved easily. On

one hand, adding new features to existing software can be painstaking if the software

www.manaraa.com

10

architecture is not designed well. On the other hand, troubleshooting could be near

impossible if the code is not clear and there are many libraries with no source available for

debugging. ATTA incorporated open source libraries besides its modular architecture to

make the application extensible.

Thesis Organization

Chapter 2 discusses the AFLEX project and Systematic Reviews (SR), their benefits,

and the requirements of the process. Also, some of the tools that are used in SRs, as well as

AI-assisted systems and applications for data collection, is described in Chapter 2. Chapter 3

includes software development concepts that have been followed during this research.

Chapter 3 also includes discussions about the importance of the theories behind the

development of ATTA. In Chapter 4 offers a detailed explanation of the steps that were taken

during the development of ATTA. Lastly, Chapter 5 discusses the outcomes of this project

and compares it with a few other similar tools. Also, it includes some of the challenges and

limits that were posed challenges to ATTA development as well as recommendations for the

future work.

www.manaraa.com

11

CHAPTER 2. BACKGROUND

Introduction

ATTA spans several important disciplines that are critical to understand to appreciate

the tools. The tools that have been developed during this project have already been used in

different situations, but there are more potential applications of the tools in other majors.

The main purpose of AFLEX is to aid automatic systematic reviews. Systematic

reviews, as the name suggests, usually involve a detailed search strategy that is designed with

the purpose of reducing bias by identifying, assessing, and integrating relevant studies on a

specific topic (Uman, 2011). It is important not to have bias in the reporting because validity

of meta-analysis can be threatened with bias. Moreover, having bias in a report can make the

results unreliable for decision making (Dwan et al., 2008). Sometimes systematic reviews

also involve a meta-analysis component that uses statistical methods to merge the data from

different studies into one quantitative estimate (Uman, 2011). Data integration could lead to a

much more efficient decision-making system that would not be possible otherwise.

One good example of systematic reviews is in the domain of clinical studies. It is

critical to scientifically verify the results of preclinical studies before conducting human

clinical trials. The consequences of human experiments based on invalid results could be

disastrous (Kaur, Sidhu, & Singh, 2016). Death, neurological damage, or multi-organ failure

of human subjects are just some possible consequences. A systematic review can provide

evidence based on the entire research field that a given decision is supported by research

evidence.

Another example of using systematic review is a review of studies from 1991 to 2013

that used machine learning for software fault prediction (Malhotra, 2015). Papers were

www.manaraa.com

12

chosen from seven electronic by a target search string and were reviewed using the

systematic review process, and the author concluded that machine learning techniques can

predict software fault tendency but that its application is limited. There are many other

examples of systematic reviews in other fields that make it a valuable process to be

considered. There is also examples of moving towards automation of SRs (O’Connor,

Totton, et al., 2018).

The current pace of the literature production sometimes seems to be too fast to

manually keep pace with the information production. This mass of scientific publications

represents a classic data science problem: an overwhelming amount of data that are difficult

to collect, hard to interpret efficiently, and harder to summarize (Thomas et al., 2011). One

solution, as it has been accepted in many other domains, is to make use of computers’

processing power, for example computer-assisted research writing (Cotos, 2016). However,

using automation tools in systematic reviews, or other fields, has its own complications and

challenges (Adeva, Atxa, Carrillo, & Zengotitabengoa, 2014).

AI in Publishing

Considering the literature, the author found several applications of AI in the

systematic review world which are relevant to this project. RobotReviewer (Marshall,

Kuiper, & Wallace, 2016) is the name of a user interface that is coupled with an artificial

intelligence classifier that uses machine learning to automatically assess bias in clinical trials.

RobotReviewer is capable of reading and processing reports in .pdf format and extracting

supporting text for the risk of bias judgement.

The results indicate that the AI system is reasonably accurate and only about 7%

behind human reviewers. The results are quite impressive; however, the authors believe that

the algorithm is not yet ready to completely take over manual risk of bias assessment.

www.manaraa.com

13

Nevertheless, the AI can significantly reduce the workload of human reviewers in practice.

That is, using the justifications that are provided in RobotReviewer output, human reviewers

will need to refer to the full report only if the AI judgments are not acceptable (Marshall et

al., 2016).

A different group that included the authors of RobotReview offers another example of

automatic systematic reviews (Wallace, Kuiper, Sharma, Zhu, & Marshall, 2016).

Population/Problem, Intervention, Comparator, and Outcome (the PICO criteria) are typically

defined by systematic reviewers’ authors. All the reports that match these criteria will be

incorporated and the results from them will be synthesized. However, the procedure of PICO

elements identification in the full-text reports is a critical yet tedious step in systematic

review process. Thus, the authors tried to use a machine learning approach to help with this

step. The results show the efficacy of their algorithm using "supervised distant supervision"

(Wallace et al., 2016). However, the next steps, which involve the further processing of the

output of their system, are yet to be developed.

There are other examples of using AI in systematic reviews for each specific step in

the systematic review process, which is shown in Figure 2-1. Project AFLEX was designed

to automate some of these systematic reviews’ steps, specifically filtering based on

experimental research design, which falls in Steps 7 and 9 of the diagram in Figure 2-1.

AFLEX

As it is discussed above, systematic reviews are not produced quick enough to keep

pace with the literature production rate. Most often, the production cost, availability of the

necessary knowledge, and timeliness are considered as major reasons for the delay (Tsafnat

et al., 2014). To automate the systematic review process and overcome the delay, the parts of

the process that computers can get involved in needs to be identified.

www.manaraa.com

14

The designing process of a systematic review involves two parts: one is technical and

the other one is creative. It is important to know what part of a systematic review system

could be automated. Figure 1-2 shows the systematic review steps that are suggested for

automation. However, not all the processes need to follow the same development plan. The

automation of some the steps may appear impossible while some of the other ones are

already automated. The important point is that the development of similar tools is

incremental (Tsafnat et al., 2014).

AFLEX is one of the major efforts towards developing a robust AI-assisted automatic

systematic review system. The ultimate goal of AFLEX is to improve the translation of

research findings from scientists to society and to enhance communication between

scientists. AFLEX aims to dramatically advance the systematic review process by processing

scientific publications and automatically identifying and extracting relevant information from

them.

Machine Learning in AFLEX

Like other developed systems in SR, AFLEX also has a machine learning (ML)

component, which acts as the artificial intelligence in the system and needs to be trained with

data. The data collection for the training is not easy. The data must be collected from specific

sources, be sanitized according to the model, and be fed into the system in the appropriate

format.

To be more specific, the papers for the ML component of AFLEX needed to be

segmented, because a single classifier would not work for all the sections. Each section, e.g.,

Introduction, Methods, Results, needs its own classifier to be trained. While some researchers

have pursued automated document segmentation (e.g. Bui, Del Fiol, Hurdle, &

Jonnalagadda, 2016; Harmsze, 2000; Kando, 1999), it is not yet broadly reliable.

www.manaraa.com

15

Furthermore, to identify the important features of an experimental design for SR (one

purpose of AFLEX), one first need to define the experimental design features themselves. It

is important to know that these features cannot be expressed simply as keywords. Instead, a

feature such as “blinded allocation concealment” is an abstract concept which may be

indicated in a research text via one or more disparate phrases in multiple sentences.

Figure 2-1 Steps for creating a systematic review process (Tsafnat et al., 2014)

https://media.springernature.com/full/springer-static/image/art:10.1186/2046-4053-3-74/MediaObjects/13643_2014_Article_244_Fig1_HTML.jpg

www.manaraa.com

16

After text relevant to the targeted abstract concept is identified, the extracted features

need to be further processed according to language patterns. The language patterns are also

linguistic features that cannot be identified only by keyword matching. Those features, like

“temporal phrase,” require semantic understanding of the text. In project AFLEX, a hybrid of

top-down rules based on linguistics and bottom-up statistical machine learning based on n-

grams has been developed (O’Connor, Totton, et al., 2018). However, as it mentioned before,

machine learning components need to be trained to be able to identify these features from the

text. This need is met by the tools developed using ATTA.

AFLEX Tag Tool Architecture (ATTA)

The ATTA project was part of the overall AFLEX project. The goal was to enable

expert reviewers and linguists to identify the desired features from the manuscripts and store

them in an efficient way, so those data could be used to train the machine learning core. The

author first explored the literature to find out if there is already an existing tool for this

purpose but did not find any developed tools that would fit the problem criteria. The author

mostly looked for the tools for text annotation, as the problem that is described here needs

the same interaction and dynamics for text annotation. The challenge, however, was that the

interactions needs of expert reviewers were quite different from linguists, two types of

stakeholders involved in the AFLEX project.

Several different text annotation tools have been designed for various contexts. The

author introduces only a few examples of them to illustrate the current state of the art. BRAT

(Stenetorp et al., 2012) is a good example of a modern text tagging tool. This tool is designed

to accept plain .txt files as the input and produces the output in .pdf format or as figures. The

tool has a clean WYSWYG interface that supports side-by-side comparison of tagged text for

conflict resolution between two different taggers. The data structure in BRAT is called

www.manaraa.com

17

“standoff,” BRAT's term indicating that it does not store the tagged data within the original

file. This data structure is suitable for cases that the original file should remain intact.

However, BRAT does not support .pdf files, which is one of the major formats of scientific

papers.

Another example of a powerful tagging tool is Callisto Annotation Workbench (Day,

McHenry, Kozierok, & Riek, 2004), which is designed for linguists. This tool is open source

and written in Java, which supports plug-ins from other languages. Callisto Annotation

Workbench allows data comparison and management. The software follows model-view-

controller (MVC) methodology that relates the user interface to the underlying data models

in an efficient way. However, the input file type is limited to plain text files, and the user

interface is cumbersome for users, as it requires multiple clicks from dropdown menus to tag

a single text. An example of Collisto Annotation Workbench usage is to tag sentences with

rhetorical move/step constructs (Cotos, Huffman, & Link, 2015).

Finally, there is the built-in commenting feature of Adobe Acrobat, which allows

storing annotations in the original .pdf files. The shortcoming with this approach is that it is

subject to human errors as the user needs to type in the annotation rather than selecting it

from a list. Also, as the annotations are stored in the file, the process of analyzing them

requires opening each individual file, which makes it a very time-consuming procedure. In

the context of the machine learning data collection, Adobe Acrobat built-in commenting

feature does not provide a good approach as the licensing prevents accessing the stored

annotation data by third-party applications. Another drawback of this procedure is that

storing annotation data in the original .pdf files makes it very difficult to collaborate on

www.manaraa.com

18

annotation; the second reviewer would see what the first reviewer has annotated or, she

would need to make a copy of the file and do the annotation.

Considering the examples above and many other applications for text annotation, the

author did not find any application that would cover the system requirements for AFLEX

data collection. Also, the applications that were discussed above do not support data

exchange between different steps of systematic reviews. The ATTA project was defined to

enable multi-discipline text annotation, improving upon shortcomings of the other tools and

to fill the gap of automation in between some of the systematic reviews’ steps. Furthermore,

the data structure and communication protocols in ATTA were designed based on the

common standards which allows other applications to easily connect and use the ATTA

dataset.

www.manaraa.com

19

CHAPTER 3. METHODS

The creation of the ATTA faced several challenges. In this chapter, the user interfaces

that emerged from ATTA are explored as a complex problem in software engineering. The

steps taken to come over these challenges were briefly discussed above. In this chapter, the

rational and justification for the decisions that were made in different stages of the

development are discussed. Lastly, this chapter includes a high-level summary of what has

been done during the development of ATTA project.

ATTA Front-End Development

There are various Software Development Life Cycle (SDLC) models in software

engineering (Ruparelia, 2010). According to the needs of this specific application, a spiral

model was chosen for the development of ATTA. As it is depicted in Figure 3-1, the cycle

starts with planning.

Planning

To plan for software, there should be a need. The software is either a response to that

need or it could be an improvement or a more efficient way of doing the same task. In the

case of ATTA, there was a critical need for an application or a suite of tools that would help

different stakeholders to do their desired text annotation tasks. Thus, we needed to define the

stakeholders and users. Essentially in the planning phase, we needed to define all the people

who were involved or will be involved in the software. Linguists, systematic reviewers

(expert reviewers), usability experts, and sysadmins are “actors” in our software ecosystem.

www.manaraa.com

20

Figure 3-1 Spiral SDLC (Software Development Life Cycle) model that is used in ATTA

User Needs Discovery

After defining important stakeholders in the software planning, the user discovery

phase starts. Using user stories in this phase can help to understand user needs. A user story

describes the application functions that are needed by a group of stakeholders of the software

. User stories can be gathered through user role modeling and user stories are specifically

useful when there is no access to all the users of the application.

To understand the user needs, it is also beneficial to interview them about their

expectations. Using a prototype of any type during a stakeholder interview can help to

understand user needs (Albert & Tullis, 2013).

It is worth to mention that this step is not considered as a common stage in SDLCs.

However, the discipline of user-centered design suggests that including this step in any

product development process will make the process more efficient and decrease the number

of iterations (Baxter, Courage, & Caine, 2015).

user needs
discovery

design

implementation

test

maintenance

planning

www.manaraa.com

21

Design

After collecting the user needs and expectations, the next step was Design, translating

the user needs into the software functions. All the coding would be done based on the design

outputs. However, if an application will have a database, one of the first steps is to design the

database. A database usually supports all the application data reads and writes and is a

critical component of the system. Changes to databases can sometimes be expensive in terms

of time. Thus, it was important to make sure that we chose the right type of the database.

Currently there are many different types of databases, but at high level, there are two major

categories: traditional and NoSQL. There are pros and cons for each, but the type of the

database to be chosen for the application is defined by the data type of the application.

Usually the data structure and volume define the database type to be used but, NoSQL

databases are useful when the data quantity is large and a relational model is not required by

the nature of the data (Moniruzzaman & Hossain, 2013). In ATTA, we chose a relational

database for our application, which allows secure structured data storage and retrieval.

It is also valuable to note that sometimes the design process cannot be done in one

single iteration. Indeed, in most cases, only high-level system designs can be done in one

iteration. Then, the software functions will be broken up into different function groups or

modules based on the user needs. In each iteration, one of the modules will be taken care of.

These partial designs are parts of the system that later will be put together to form the entire

software.

Though multiple people contributed to ATTA, it had one primary developer. All the

iterations of the tools’ development occurred in close communication with users and

stakeholders. This active communication reduced the number of iterations and increased

development efficiency. Furthermore, following an agile approach in ATTA development

www.manaraa.com

22

helped to plan and deliver modules in due time, granting stakeholders satisfaction. Agile

methods in software engineering offered an answer to the business community that sought

quicker software development processes. Agile methods advocates believe that the focus of

these methods is simplicity and speed (Abrahamsson, Warsta, Siponen, & Ronkainen, 2003),

and typically involve multiple iterations of development based on gathering feedback

frequently. In ATTA development, for instance, the development focus was on the functions

that were needed immediately to ensure quick delivery. Feedback was collected, and changes

were made based on the feedback.

UML modeling

Software design is a collaborative process and there is a common language to be used

in this process. UML or Unified Modeling Language (Rumbaugh, Jacobson, & Booch, 2004)

is widely used in software engineering. This language has diagrams that help developers to

have a consistent way of thinking and design. These diagrams are the views of the UML

Model, the model of the software that is built based on the user needs. The practice of putting

collected data about the user needs into the form of the diagrams enables developers to model

the software more efficiently. For instance, a use case diagram is shown in Figure 3-2. This

type of diagram can help developers have a better understanding of translating needs to

functions.

www.manaraa.com

23

Figure 3-2 A sample use case diagram

In this diagram, there are different actors (users) that interact with the system. Each

actor represents a user or a group of the users. The ovals show the ways that users can

interact with the system. To give an example related to the ATTA, in this diagram, one actor

can represent our expert reviewers and the other can represent linguists. The use cases are the

abilities that the users will have in the system. For example, Use Case 3 might be “log in”

since both actors share that usage, and Use Case 2 might be “identify experimental design.”

These use cases are all defined based on the user needs and application requirements.

It must be pointed out that the use case diagram is not the only type of the diagram that is

used in this step. There are other types of UML diagrams such as the activity diagram, class

diagram, entity relationship diagrams (ERDs), etc. that can help the design process. In the

case of ATTA, use case diagrams were sufficient.

The output of this stage of the SDLC is a model of the system that is translated into

different features (use cases) which the final product will have.

www.manaraa.com

24

Implementation

This step is the main step of development, which means all the coding will be done in

this stage. Given the designs from the previous step, each use case will be translated into a

software function. Each of these functions are either an application’s feature or an answer to

a user need. In case of ATTA, the different user types had their own unique ways of

interacting with the system. Nonetheless, there are some functions that are shared between

different users, such as log in and log out. The specific use cases for the ATTA are listed in

Chapter 4.

Documentation

One of the most important, yet most time-consuming practices in software

development is documentation. The cost of documentation seems to have been overlooked in

the literature (Zhi et al., 2015). In the past few years, before agile methodologies become

popular, Rational Unified Process (RUP) (Kruchten, 2004) was one the most common

software processes. The documentation requirements in RUP were significant and for each

component of the application, there had to be a separate piece of documentation. In contrast,

agile methodologies removed this much of focus on the documentation.

Inspired by agile methodologies, the documentation in AFLEX project was done as

inline comments in the code. The documentations of this type might be less comprehensive,

but in turn, it required less time to accomplished. Also, this documentation is more closely

connected to the code, enabling other developers to understand the code faster.

The output of this step was be a working application with limited number of the

functions. For the initial iteration, all the functions that should be implemented were in place

and they worked as intended, according to the developer’s point of view. However, they need

to be tested with the end users before they can start using the application.

www.manaraa.com

25

Testing

There are different types of testing that an application can undergo. There are even

some cases in software development in which other applications are responsible for testing

the application under development. EvoSuite is an example that does the automatic tests for

code which is written in Java (Fraser & Arcuri, 2011).

In case of ATTA, we chose to use a testing method in which every module of the

application was tested separately before the delivery and integration with the system. A

module is a function, or a set of the functions in the software that can be considered as a unit

and has a specific purpose which could be tested against the requirements.

The testing process can involve different activities. It could be a part of the user

interface that needs to be tested, or, it can be a part of the back-end functionality. Sometimes

there is a condition in which there are modules that depend on each other, but only one of

them is ready for testing. For example, a part of the user interface might be ready to be

tested, but the corresponding function in the back-end is not ready yet. To make sure that the

UI part works correctly, we need to have a response from back-end. In this case, we would

create a mock-up function that sends a static response to the front end or user interface. This

way, we can test our UI to make sure that it works and, whenever the back-end function is

ready, it will be tested and placed in the system.

In ATTA case, the UI was tested multiple times in different iterations before the

back-end is implemented into the system. The UI called a function on the server which did

nothing but to send a response with a delay to test the UI functionality. The delay in the

mock-up response was implemented to simulate connection issues, so that the UI behavior

can be assessed in that case.

www.manaraa.com

26

Maintenance

This step is the final stage to complete a cycle in SDLC. Maintenance involves

addressing the issues that are discovered during the testing phase. There also might be some

issues not found during the testing, but after delivery, the users would report those issues. In

either case, the issues will be resolved in the maintenance phase, and the cycle completes.

Another cycle is started as soon as one is ready to add more features to the system or

implement another set of functions. All the new functions will go through the same cycle

process, starting from planning and, will be in place after the testing is done.

Occasionally, we need to go back and forth between testing and maintenance. For

instance, there may be a critical function of the system without which the software would be

disrupted. In that case, we need to focus on that function and test it as many times as needed

to ensure its functionality. Also, there may be some other critical functions that are important

not because the system depends on them entirely, but because of the sensitive information

that they handle. In that case as well, the cycle might be limited between test and

maintenance steps until that function runs correctly.

ATTA Development Summary

Project ATTA was started in Dec 2016 as a part of the AFLEX project. The

development was carried on for almost two years. During this time span, development

meetings were held every week with the individuals who oversaw ATTA. In these meetings

the progress on the software development was discussed and feedback collected. Also, there

were monthly meetings with AFLEX team to make sure ATTA is in sync with AFLEX

requirements. Moreover, there were many occasional meetings, roughly one per month on

average, with end users of the ATTA tools. Meetings with users usually involved a

prototype, a UI design, or a tested module of the software that was ready to be tested by the

www.manaraa.com

27

end users of application. These meetings helped significantly with speeding the iterations of

software development. The total number of stakeholders who were involved in different

meetings was 12.

Project ATTA started with the development of the Tag Tool 1. It took almost a

semester to complete. Meanwhile, during the meetings about Tag Tool 1, the need for Tag

Tool 2 for linguists was discovered. The development of Tag Tool 2 also took almost a

semester, which also involved the Review Tool as a needed extension for it. The third

semester was spent on development of Checklist Tool, which was not initially planned. It

should be noted that during the development of each new tool in ATTA, the previous ones

were still under the maintenance iterations for troubleshooting or adding features.

www.manaraa.com

28

CHAPTER 4. ATTA TOOLS DEVELOPMENT

In this chapter the actual steps that were taken for the application development are

explained in detail. This chapter essentially describes the practical implementations of the

theoretical discussions of software development in the previous chapter.

ATTA Tools Planning and Design

The first step of planning process is to identify the problem that the application will

be designed to solve. The problem of this application was that people needed a dataset of

annotated research articles for their research, but there was no efficient way of collecting

data. The data needed to be stored in a structured way that could be exported for various

purposes.

Considering this short description of the problem, there is a need for a robust data

storage mechanism and data-oriented design. Also, there should be a way to enable users to

store/retrieve data. The part of the application that allows users to interact with the data or

system in general is usually called GUI (Graphical User Interface) or UI in short.

AFLEX interviews

To have a good understanding of the problem domain, the author conducted initial

interviews with stakeholders who oversee the project. After defining the project scope, the

interviews with users of the application started. As mentioned above, there were regular

meetings with stakeholders and the future users of the application. The difference was that

the meetings with the users usually involved a prototype for feedback or a deliverable to be

tested. Other stakeholders were updated about the project progress and made sure that the

project was done within the defined time and cost. Also, they made sure that ATTA met the

AFLEX requirements.

www.manaraa.com

29

Stakeholders of AFLEX

To start designing a UI, all the users of the application must be defined. It should be

noted that the users are stakeholders of the application who directly interact with the system

through the UI. However, there are other stakeholders who affect the design of the system,

though they would not interact directly with the application. For ATTA, the following

stakeholders were defined.

Expert reviewers

This group of stakeholders are also users of the application. It means that their

expectations and needs will affect the design of the UI. To know the user story of this group,

the author interviewed them. A user story follows.

Pat, an expert reviewer, wanted to identify text excerpts of an article that provided

evidence that the article authors used a randomized parallel design. Pat found the text

“Animals were randomized to treatment groups and induction of transient focal cerebral

ischemia,” which Pat tagged as “Random.” Next, Pat found the text “The individual

performing the infarct volume analysis was blinded to treatment group,” which Pat tagged as

“Blinded Outcome Assessment.” These annotations would be used later by the expert

reviewer in a meta-analysis to identify papers in a larger corpus that had randomized designs

with an animal population.

A summary of expert reviewers’ requirements is listed in Table 4-1. This table is

compiled based on the information that were collected during the interview sessions.

www.manaraa.com

30

To work on the manuscript, the expert reviewer would need a user interface to store

and render the manuscripts. The manuscripts are in (portable document format) .pdf format.

Table 4-1 User requirements for expert reviewers (Ramezani et al., 2017)

Then, they would want to read the manuscript, find the parts of the text that represent

specific design patterns, select that part of the text, and assign the appropriate predefined

design patterns (tags) to it. This set of text excerpt and the design patterns (tags) should be

stored as an annotation record. They would also need to be able to review the annotation

history and make changes if it is necessary. Annotation records also need to be related to the

manuscript that they were extracted from.

User Functional Requirements System Support & Response

1 Read PDF and visually locate text. PDF rendered at readable size in browser

with zooming features

2 Select text within PDF Selected text highlighted in PDF; plain text

extracted to Annotation Box sidebar.

2a Option: select additional non-

contiguous text and they will be

grouped together

Additional text highlighted in PDF and plain

text extracted and added to Annotation Box.

2b Option: Delete text selection just

made

Text passages in Annotation Box can be

deleted individually

3 Select one or more tags Tags highlight when selected

3a Option: deselect one or more tags Selected tags de-highlight when clicked again

3b Option: add free response

comment text

Textbox accepts plain text.

4 Click OK to complete tagging Text passages and tags stored in database and

added to Work History in sidebar. Highlights

clear from PDF. Tags reset to unselected.

Annotation Box cleared.

5 Note the time spent on tagging The system records the time taken between

OK button clicks to measure the time spent to

tag each text excerpt. It is also possible to

aggregate the times for a specific document or

part of the corpus.

www.manaraa.com

31

There are multiple expert reviews that would work on the same set of manuscripts.

Therefore, the system needs to keep the track of each individual user’s work history and store

those data in an organized way. This multi-user dynamic can raise a potential conflict

situation. There are two types of potential disagreement between the reviewers:

1- Expert reviewers would select the same part of the manuscript that they think

represent a specific design pattern but, the design patterns are different from one

reviewer to another. (Reviewer A: Text1 > TagA; Reviewer B: Text1 > TagB)

2- Expert reviewers would select different parts of the manuscript as the

representatives of the same design patterns. Reviewer A: Text1 > TagA; Reviewer

B: Text2 > TagA)

Considering these conflicts, there must be a module built in to the system that would

enable expert reviewers to resolve the conflicts. Based on the results of conflict resolution,

annotation records should be updated to match the final decision. It should be noted that the

final decision would likely be made by someone else to make sure there is no bias in the

results.

Linguists

This group of stakeholders are also considered as users of the system. Thus, the UI

design will be affected according to their needs and expectations. This group’s user story is

as follows. Also, linguists’ requirements are compiled as Table 4-2 based on the information

collected from the interview sessions.

Lingu, a linguist, wanted to identify language patterns in the excerpts from the

articles that have been annotated by expert reviewers. Lingu was presented with this

sentence: “The individual performing the infarct volume analysis was blinded to treatment

group.” Lingu selected the “Manner” language pattern and marked “blinded to treatment

www.manaraa.com

32

group” as the evidence of that linguistic pattern. Lingu did not see any repeated records of

different expert reviewers extracting that same sentence. Also, Lingu had the context

available from which the expert’s text was extracted in case further analysis was needed.

Language pattern identification is a part of the text processing to collect data for training

machine learning algorithms.

Table 4-2 User requirements of linguists (Ramezani et al., 2017)

The linguists have developed a model based on move/step for methods section

(Cotos, Huffman, & Link, 2017). Also, like expert reviewers, linguists have tag sets that are

called language patterns. These tags need to be defined before the process starts. The

linguists would need to process the annotations even further at the word/phrase level. It

means that they would need to choose a language pattern (tag) and then select all the

occurrences in the text excerpt according to that specific language pattern. The occurrences

should be stored in a structed way, so they can be processed.

User Functional Requirements System Support & Response

1 Read plain text passage. Plain text rendered at readable size in

browser.

2 Select tag to work with. Tag highlighted in sidebar.

3 Select string of text. Text highlights when selected

3a Option: Select an additional string

of text that is not selected.

Selected tags de-highlight when clicked

again

3b Option: Delete highlight from a

string.

A selected highlight shows a button for

deletion.

4 Click OK to complete tagging Text passages and tag stored in database.

Highlights clear from text passage. Tag

changes to “tag used” color and gains

badge number with count of strings tagged.

www.manaraa.com

33

Moreover, the results need to be reviewed and changed if necessary. There might be

some language patterns that are missed in the text, so they need to be added later through the

review user interface.

System admins

Unlike two previous stakeholders, this group of stakeholders are not direct users of

the application. Thus, they would affect the UI design. However, they will affect some

critical parts of the software. Thorough an informal interview the author found some

technological limits imposed on the project that would limit the development technologies to

PHP and jQuery. For example, the available server would not support.Net technologies or

NodeJS. In addition, other limitations arose throughout the project. For example, there were

some open source modules that needed to be installed on the server, but because of security

concerns, the author was not able to do that. The table of system admins’ requirements is

shown in Table 4-3.

Table 4-3 System admin requirement for ATTA

Machine learning researchers

This group of people form the last group of stakeholders involved in AFLEX project.

These users would not need a clean and customized UI to interact with the system, but rather

they needed a structured output for their machine learning algorithms. The output needed to

Stakeholder Functional Requirements System Support & Response

1 Linux on servers Cannot use Microsoft technologies like

ASP.Net, neither NodeJS.

2 Need language and libraries that are

familiar.

Limited to use PHP, jQuery

3 MySQL database on the server. MySQL database should be used for

application.

4 Security concerns They must be taken care of

www.manaraa.com

34

match their desired format with machine readable structure and the data that they required.

Thus, there was a need for an output creation (export) module. The output for machine

learning is usually in plain text format with the structure defined by the destination

application. A tabular summary of machine learning researchers' requirements is shown in

Table 4-4.

Table 4-4 Machine learning researchers' requirements for ATTA

AFLEX Use Case

According to the stakeholders discussed above, use case diagram of the AFLEX will

look like Figure 4-1. Note that the only stakeholders that affect the system design will appear

in the use case diagram since they are considered as actors in the system.

It should be noted that there is an abstract actor in the use case diagram which is

called “user.” The “user” actor performs the use cases that are common between other actors

who refer to it. This abstract actor helps organizing the system functions and modules.

Stakeholder Functional Requirements System Support & Response

1 Data format specifications Data should be exported in the format

that is expected by ML researchers

2 Data exchange dynamics It must be discussed to make sure the

data will be exchanged without any

problems

3 Data structure specifications The data needs to be structured to match

ML researchers' expectations

4 Security concerns They must be taken care of

www.manaraa.com

35

Figure 4-1 The use case diagram of AFLEX tag tools

This diagram helped to design ATTA. After understanding the user needs and

interpreting them as action verbs in a use case diagram, it was easier to define the functions

and software modules that were needed in the system.

User Stories

Whiteboarding, was used to increase the efficiency of the interviews. Drawing

pictures may help people to think in a more organized way by creating "boundary objects"

(Carlile, 2002) that allow people with different backgrounds to discuss a situation with

common terminology, crossing the boundaries of their disciplines of expertise. In Figure 4-2,

there are pictures of whiteboarding during the interviews.

www.manaraa.com

36

Figure 4-2 Pictures illustrating whiteboarding techniques during the interview sessions.

This step was one of the most important stages of the software development. Using

techniques like whiteboarding not only helped communication with the user, but also gave

the developer an idea of the users’ expectations. The user may expect the software to look

like what she draws on the board. Thus, the layout draft of the UI can be defined by the user

at very first steps of development.

www.manaraa.com

37

Wireframes

Using wireframes, the UI designer can create a fast prototype that will give the user

the feel of the final product (Albert & Tullis, 2013). In the ATTA project, multiple

wireframes were created and discussed with the users. The feedback from the users then used

for the development of the final product. One of the wireframes that used during the design

process of ATTA project is shown in Figure 4-3.

Using wireframes made the UI design process smoother and more efficient since the

communication process with the end user was easier. Also, the interaction with the system

after implementation was more intuitive for the users because not only it looked familiar, but

also it was more likely to match the mental model that users had in their minds.

Figure 4-3 A wireframe of ATTA that was used to improve the efficiency of UI design

www.manaraa.com

38

High-Fidelity Prototypes

Based on the wireframes, the author created high-fidelity prototypes to be tested by

the end users. High-fidelity prototypes usually are used with mock data just to show the

functionality of the software to the user. The user can interact with the prototype just as she

does in the real product, but the data is mocked up.

These prototypes usually had most of the functional elements of the final UI design.

The author walked the users though different prototypes that had been developed to make

sure that they will match the users’ mental models. This step was the last step before

designing the final product front-end. It should be noted that this cycle of wireframing,

prototyping, and revising (maintenance) happened multiple times through the SDLC of

ATTA, as is predicted by agile programming methodologies.

Version Control

The management of changes to the application is called version control. Using

version control, developers not only are able to keep track of the changes in the source code,

but also are able to revert to a specific version if needed (Loeliger & McCullough, 2012).

There are different software solutions for version control. The author chose to use git to

manage the changes of the application. One good reason of choosing git is the ability to

create branches. By creating branches for the features that are being worked on, the main

application remains unchanged. After the new feature or bug fixing is done and tested on a

separate branch, that branch can be merged to the main branch and will affect the final

software.

Development/Production Environment

Once the system is released to be used, it cannot be down for a long time. The

maintenance should occur seamlessly without interrupting the usage of the system. The

www.manaraa.com

39

development team set up two different environments for the application. These two

environments were essentially two identical servers with different purposes.

The first setup was the “development environment.” The goal of this setup is to

deploy early releases of the application and to test new features. All the new features and

modules were tested through the development environment before being published on the

production environment. The user data logged in this environment were useless and were

subject to removal at any time. Thus, the users felt free to do whatever they wanted with the

system. It is good to note that this environment acts as high-fidelity prototype, and it is

usually valuable if system engineers watch the users as they interact with the system at this

stage.

The “production environment,” on the other hand, was designed to be used with real

data. The data in this environment were securely stored and users knew that they were

interacting with the real system. Any software updates to the application took place at low

usage times after the updates were tested on the development environment. The production

environment was supposed to be up and running all the time and all the common

maintenance practices were done for it.

The front-end of the system has been discussed, but there are other critical parts of the

system that need to be described. One of the most important layers of the system is the data

layer. The data layer is responsible for storing the data and serving other parts of the

application with data.

ATTA Database

One of critical decisions for the system designer is to choose the database type. This

decision affects all other parts of the system. In the case of ATTA, because data are highly

www.manaraa.com

40

structured, the author decided to use a relational database. Considering the technologies that

were available on the server, the author chose MySQL database for this application.

To design the database, all the entities in the application domain were listed. Usually

each entity had a table counterpart in the database. The database design was carefully

created, as the application performance highly relies on the database structure. Furthermore,

database tables were normalized according to the normal forms. The practice of

normalization restructures the database tables to improve data integrity and reduce data

redundancy in the database. The results from designing and normalizing the database tables

are illustrated in Figure 4-4.

Figure 4-4 The ATTA database schema

www.manaraa.com

41

As it is shown in Figure 4-4, there are multiple tables in ATTA database. The “tag_”

prefix indicates these tables belong to ATTA since there were other tables in the same

database as well. Each table is responsible for storing a specific data type in the application.

The excerpts from the texts that were annotated by expert reviewers are stored in “tag_texts”

table while the document information is stored in “tag_documents.” The “tag_users” table

contains information about the users of the application, and “tag_unique_strings,” designed

by Philip Cordova, stores the unique strings that are identified by a de-duplicator module.

The de-duplicator is explained in detail further below in this chapter.

AFLEX Tag Tool Architecture Development

After the designing phase was done, the development started. In the development

phase, all the coding was done based on the results from the designing step. Considering the

user needs, the author decided to have the software solution as a web application due to the

following reasons.

1- There is no need to install anything on the client computers with a web

application. Users will need a working Internet connection and a browser to use

the application.

2- Since the application is at the early stages of development, it is subject to change

frequently. Thus, having a web application, which has minimal maintenance

costs, is desirable.

According to the technologies available and the limits imposed on the project, the

author chose PHP as server-side scripting language. No libraries on the server for PHP were

used. Also, JavaScript was chosen for client-side scripting. Pdf.js was chosen as the library

for rendering pdf files in a browser, jQuery was chosen for the client-side scripting library,

and for the front-end, the Twitter Bootstrap CSS library was used.

www.manaraa.com

42

User Management

The tag tool needed a user management system. User management systems allow

users to sign up, to be authenticated, and authorized (Boyanov, 2005). Furthermore, user

identification is a part of the user management that enables the application to track the work

history of individual users.

In the case of ATTA, user management is done via Google. Thus, ATTA users need

to have a Google account to be able to use the system. Iowa State University is partnered

with Google for the university’s email system and because of that, most ISU community

members have a Google account already set up.

ATTA users should be authenticated in Google servers and authorized through

Google OAuth 2.0 service. The Google authentication user interface integrated into ATTA is

shown in Figure 4-5. The connection between the application and Google services establishes

directly after a user logs in to the system. Google sends the profile information that is

requested by ATTA, so user information such as user id, profile picture URL, etc. is stored in

the database. It should be noted that the structure of the ATTA database supports

independent user management as well.

www.manaraa.com

43

Figure 4-5 AFLEX authentication system using Google services

Tag Tool 1

The first module of ATTA, which is called Tag Tool 1, is an answer to the expert

reviewers' needs. They wanted to be able to review a manuscript to identify the design

patterns that are present in manuscripts. The parts of the text that serve as evidence of a

design pattern should be extracted and stored as an annotation record. The context of the

excerpts also is important. Thus, a link to the manuscript also needs to be stored.

Figure 4-6 shows a screenshot of AFLEX Tag Tool 1 in which the manuscript is

rendered on the left side panel. On the right panel there is an annotation box which includes

that predefined design patterns. These patterns are stored in the database and are loaded

www.manaraa.com

44

dynamically as the application loads up. Thus, the patterns could be removed/changed easily.

Also, it is very easy and fast to add new patterns to the system.

Figure 4-6 Screenshot of Tag Tool 1 designed and developed for expert reviewers.

Furthermore, near the bottom of the right panel there is a comment box that allows

users to add comments to the annotation records (Figure 4-7, left). The comment is useful for

sharing the rationale for the tag, so the conflict resolution process will be much easier. At the

very bottom of the right panel there is work history module UI. This module keeps track of

individual reviewer’s work (text annotations) and enables reviewers to change or delete their

work by clicking on the desired record. The red X button for each record will remove the

www.manaraa.com

45

record from the database, as would be expected. A delete confirmation message is also

included (Figure 4-7, right). It also should be noted that this layout of application was

developed based on the wireframes and the feedback from the users of the application.

Figure 4-7 Comment box and work history module for Tag Tool 1 (left), and work history

deletion confirmation message (right).

Tag Tool 2

Another module of the ATTA is called Tag Tool 2, which is designed for linguists.

Essentially this tool will use the output from Tag Tool 1 (annotation records) and will allow

linguists to process the records at a word or phrase level. The linguists needed the annotation

records along with the text that they have been extracted from. By processing the annotation

records, linguists can identify the language patterns in the text excerpts from the Tag Tool 1.

This tool’s UI is designed similar to Tag Tool 1 to maintain consistency. A screen shot of

Tag Tool 2 is shown in Figure 4-8.

Unlike in Tag Tool 1, in which the annotation process starts by selecting an excerpt of

the PDF text, in Tag Tool 2 the tagging process starts by selecting a language pattern on the

right. The selected language pattern would be highlighted and the user (linguist) selects all

www.manaraa.com

46

the instances of that particular language pattern in the current annotation record. The user is

also able to remove the record by hovering over highlighted part of the text and clicking on

the X icon that appears.

The left side is divided into two panels. The top left panel shows the annotation

records, one at a time. The annotations that are shown there are the ones that are refined and

agreed on by the conflict resolution process. Also, at the bottom of this panel, the total

number of annotation records and the current record are shown.

To make the tagging process more efficient and easier for linguists, the annotations

were displayed one by one using the Next button at the bottom of the top left panel. The

users also can go back to the previously tagged sentences by using the Previous button.

Furthermore, the tagging records were seamlessly stored in the database using AJAX, in real

time as the user (linguist) selected phrases. This approach was discovered through multiple

iterations to be the best tagging interaction process.

The bottom left panel renders the original text from which the excerpt is selected. The

reason of rendering the original text is that linguists needed to be aware of the context of the

text excerpt. The annotation record is highlighted in the rendered manuscript for

convenience.

Like design patterns, language patterns are also dynamically published from the

database to the right panel. Thus, they can easily be added, removed, or changed. The only

difference from Tag Tool 1 is that in Tag Tool 2, only one of the language patterns can be

selected at a time.

www.manaraa.com

47

Figure 4-8 Tag Tool 2, which is designed for linguists.

Tag Tool 2 Review Tool

As mentioned in previous chapters, the data that is collected needs to be verified to

ensure the quality. Sometimes in the verification process, there are some changes to the data

that need to be made. Also, there might be some missing points or data points that need to be

removed. All these data manipulations need to be done in the same context as the data is

collected. Thus, the third user interface is created for this purpose (Figure 4-9).

www.manaraa.com

48

Figure 4-9 A screenshot of the Review Tool, which enables linguists to verify data.

The Review Tool loads the records from Tag Tool 2 that are stored in the database.

The tags are color coded to facilitate the review process. The records are grouped by the file

that they are come from, and each excerpt has its records in the same row. A user can modify

a specific record by clicking on it. When a record is selected to be modified, it is highlighted

in the text to show the user the phrase in context.

De-Duplicator

The De-Duplicator module is one of the underlying functions of the system which is

implemented in the business layer of the application. Originally, this module had not been

planned. However, after delivery of the Tag Tool 2, a new requirement was discovered. The

problem was the repeated text excerpts in the Tag Tool 2 data inputs. As it is mentioned

www.manaraa.com

49

before, the input of Tag Tool 2 comes from the output of Tag Tool 1, and since there were

multiple expert reviewers working on the same dataset, duplicates are expected. However,

linguists did not want to see and tag repeated records, as doing so potentially leads to

inconsistency, less efficiency, and increasing probability of error.

To resolve the issue, the De-Duplicator module was developed and verified by Philip

Cordova, an undergraduate student at Iowa State University. The module uses the SHA-256

hashing algorithm to identify unique records. As one record is added to the Tag Tool 1 table

in the database by expert reviewers, the hash is calculated and compared against the rest of

the hashes to see if it is a unique record. If the added text excerpt is identified as unique, it is

added to the unique sentences table in the database. Otherwise it is skipped by the de-

duplicator module. A diagram of the system including the de-duplicator subsystem is

depicted in Figure 4-10.

Figure 4-10 A diagram of the de-duplicator module in relation to ATTA

www.manaraa.com

50

Checklist Tool

One of the most important and powerful features of AFLEX tag tool that is discussed

in this document is modularity. Modularity makes ATTA a flexible architecture, allowing it

to be adopted and used for various purposes with minimal changes and cost. A good example

of this feature is Checklist Tool, which is also developed by the author. The Checklist Tool

uses the underlying ATTA structure and the overall goal of text annotation, but with a very

different type of tool. The need and justification for creating Checklist Tool is as follows.

In the scientific publication domain, there is a high-impact problem that leads to

research wastage. There are several reasons that can cause, for instance, roughly 85% of

healthcare research funding to be wasted. Reasons include poor study design, poor research

question selection, and poor reporting. In 2010, it was estimated that 200 billion USD was

the cost of wastage (Okumura, 2016).

Focusing on reducing the wastage that is due to poor reporting, major medical

journals implemented reporting guidelines or checklists which specify a minimum set of

items required for a good report. Over 400 reporting guidelines have been developed so far

for different types of research (The EQUATOR Network, n.d.). To name but a few, the

STROBE (Von Elm et al., 2007) statement is developed for observational studies, while

CONSORT statement is created for randomized controlled trials (Schulz, Altman, & Moher,

2010), and the PRISMA statement for systematic reviews (Moher, Liberati, Tetzlaff, &

Altman, 2009).

Even though these guidelines have helped reduce wastage, the implementation of a

system to use these guidelines has not been convenient. For instance, if someone wants to

publish in one of the journals that require completed checklist, she would need to download

www.manaraa.com

51

the checklist (in .pdf or .docx format), complete it (either by printing it and handwriting or

filling up the .docx version), convert it to .pdf format, and finally upload it along with the

manuscript. This process is tedious and frustrating and adds to the burden of writing the

manuscript itself.

Considering the flaws in the checklist completion process, the AFLEX team designed

and implemented an innovative solution that makes the process much more efficient and user

friendly. The solution involves adopting ATTA to the problem needs and creating a new tool

that helps checklist completion, the Checklist Tool. Using the Checklist Tool, a user uploads

her manuscript to the system, completes the checklist using the tool, and downloads the .pdf

output that is generated by the system. The output of the Checklist Tool is structured and laid

out to be ready to be uploaded to the desired journal.

The Checklist Tool uses a similar web interface as the other AFLEX Tag Tools do.

Also, the database and layers of the application are the same as AFLEX tag tools. Despite

this, there are significant differences in the user interaction, purpose, and the output of the

Checklist Tool and the Tag Tools. A screenshot of the Checklist Tool is shown in Figure

4-11.

One possible user scenario for the checklist tool is when a user wants to upload his

manuscript to a journal that needs a completed checklist. After finalizing his report, he goes

to the checklist tool, uploads the manuscript and selects the desired guideline from the top

left corner. The corresponding items of the selected guideline appear on the right panel. If the

user is unsure of what an item requests, he can mouse over the "?" icon to see a tooltip about

that item. The user then selects and opens an item from the checklist on the right panel and

finds the corresponding text in the manuscript. By selecting the related part of the text, it is

www.manaraa.com

52

copied in the box under the selected/open item. The user can change the copied text, but the

page numbers from the selection will automatically be added to the final report. For

example, to complete the guideline item ABSTRACT, the user would selecte the text of the

abstract in the left panel, and that text would be transferred to the ABSTRACT item in the

right panel, along with the page number from the original document.

Figure 4-11 A screenshot of the Checklist Tool

After completing the checklist, the user would use the green button on the top right

corner that would generate the .pdf output in the selected guideline’s layout and structure. A

quick validation occurs as the user clicks on export button to let the user know about the

checklist items that are completed and the items that are left empty. The titles change color to

www.manaraa.com

53

red and an indicator appears on the list items to make the empty ones stand out. The output

would be downloaded to the user’s computer and he would be able to upload it with his

manuscript. A screen shot of a part of the output of Checklist Tool is shown in Figure 4-12.

Figure 4-12 A screen shot of Checklist Tool output, a PDF file.

File format conversion

The Checklist Tool was designed to facilitate the checklist completion, but it

supported only .pdf files at the initial launch. Different journals require different file formats

for the submission. Thus, the checklist tool needed to support common file formats that are

needed by different journals. After discovering this need, Vlad Sukhoy, a member of AFLEX

development team, created a solution for the problem. He used Google Drive Services as a

proxy for the Checklist Tool that would convert most document file formats (.doc, .docx,

.dot, .html, .odt, .rtf, .txt) to .pdf prior to being rendered in Checklist Tool. Using a third-

www.manaraa.com

54

party converter module also directs the liability of storing manuscript files to the user’s

private Google account.

AFLEX Tag Tool Maintenance

To build an application is a complicated and time-consuming task. However, if the

code is not well written, then the maintenance can be quite difficult. Anecdotally, developers

can often cite from their experience examples of software that were not worth the

maintenance and that needed to be rebuilt from the scratch, only because the original

developer did not follow best practices in coding.

Documentation

The code documentation was all done inside the code itself as inline or block

comments, instead of in separate documents. This approach will help other developers to

understand the code more easily and quickly. Also, it did not require a long time and a

separate effort to do that. Documentation was done while the application is being developed,

ensuring accuracy and efficiency.

www.manaraa.com

55

CHAPTER 5. DISCUSSION

This chapter is dedicated to discussions on the ATTA development, outcomes,

challenges, and limits that the author encountered during the project. During this project, a

modular user interface was produced. All the modules use the same database, so the data can

easily be exchanged between them. Although each of the UIs were tailored specifically for

the intended users, they have other potential applications across disciplines.

Development

There are some special considerations to which the author attended during the

development of this project. These considerations are not necessarily common practices in

software development, though the author believes that they are valuable to be considered in

every software development process.

 Sustainable Design In ATTA

The author suggests that people consider sustainability in every job position they are

in. However, in traditional software development, sustainability has often been overlooked

(Penzenstadler, 2013). Practices that help save the environment are always appreciated.

Considering the ubiquitousness of software applications, these practices will have a huge

impact on the environment. There are many sustainable activities that could be done during

software development, but the following was the one that the author paid attention to during

this project.

In general, everything that makes a system work more efficiently can be considered

as a sustainability practice. For instance, if an application is optimized in a way that needs

less processing power to run, it means that the whole system consumes less energy to

produce same results, which leads to saving the environment.

www.manaraa.com

56

User interface design considerations

In general, monitors consume more power to render light pictures than dark ones.

Thus, using darker colors and patterns, if it is possible, can save power while outputting the

same results. Throughout this project, the author not only paid attention to these details in

user interface design, but also considered people with color blindness. To follow the

principles of universal design (Shneiderman, 2000), people with disabilities should always be

considered. The author chose colors that are usable for people with color blindness, in the

darker part of the color palette. Also, the interface includes an additional text-based indicator

beyond color to communicate with the user.

Challenges

In this section the challenges that were faced during this project are discussed. Some

of them are general challenges and some of them are specific to tools created with ATTA.

The .pdf File Type

The PDF (portable document format) file format may be used for text, images, and

multimedia elements to be presented (Lukan, 2018).However, when it comes to automatic

systematic reviews in which the text needs to be read by a machine, it is difficult to extract

the text from a .pdf file without any errors. The reason is that first, there are multiple versions

of .pdf file types that are different in their internal structure and, second, the text is not stored

the way it is rendered (Lukan, 2018). For example, to be able to extract a sentence, one needs

to find the position of the letters that formed the sentence and put them together. If a sentence

spans multiple pages in a .pdf file, for example, the first section and the second section of the

sentence are likely stored in very different places internally within the file.

Using a client-side library like PDF.js helped this process significantly as the library

not only renders the .pdf file as HTML, but also has some functions that extract a selected

www.manaraa.com

57

part of the text from that .pdf file. Given that this process is still not robust, there are some

heuristics that are implanted in the ATTA code to take care of problems like line breaks,

spaces, etc. It must be mentioned that there is still a small chance that when a user selects a

text excerpt, the output could be very different. Also, some of the .pdf files are not

compatible with the PDF.js library and as a result, they cannot be rendered at all.

Evaluation

The evaluation criteria for these types of tools were mentioned in Chapter 1 of this

document. The author evaluated the AFLEX tag tools in comparison with other tools that

were discussed in Chapter 2 against the criteria.

Table 5-1 A comparison between AFLEX tag tools and similar tools in the literature. N/A

indicates that not enough information was available for evaluation.

 Multi-

user

support

User

centric

UI

design

Conflict

resolution

system

Input

file

type

support

Output

file

types

Data

storage

type

Extensible

/ support

plug-ins

AFLEX tag

tools
YES YES YES

.pdf,

.doc,

.docx,

.dot,

.html,

.odt,

.rtf, .txt

.csv,

.xml,

.json

separate

from file
YES

BRAT YES N/A YES .txt N/A
separate

from file
NO

Callisto

Annotation

Workbench

NO N/A NO .txt
.pdf,

figures

separate

from file
YES

Adobe

Acrobat
N/A N/A NO .pdf .pdf

In the

file
NO

www.manaraa.com

58

Future Work

Machine Learning Implementation

As it is noted before, ATTA is a part of the project AFLEX which involves natural

language processing using machine learning algorithms. The tools resulting from ATTA

helped collect data for the purpose of AFLEX. However, currently the machine learning part

is not finalized and still is under development. The machine learning part can be developed in

parallel to the data collection. The important point is that the data should be stored and

exchanged in the way that the machine learning components needs it, so that ATTA serves as

a smooth pipeline to future text processing tools.

Data exchange pipeline

In this document, it has been mentioned multiple times that all the user interfaces of

ATTA tools share the same database. Thus, there is no problem of exchanging data between

those interfaces. However, to be able to export data to be used by other applications such as

machine learning algorithms, there must be a pipeline that would enable applications to

connect and exchange data. The most common way is to create a webservice that has access

to the database and would expose some end points for other applications to connect to them.

There are standard ways of creating a web service. The author recommends creating a

RESTful web service (Richardson & Ruby, 2008) that would be called by the machine

algorithm for the data exchange. A diagram of this architecture is shown in Figure 5-1. It also

should be noted, as it is mentioned in the diagram, that the RESTful service will only support

read operations, meaning that it would not allow changes to the data.

www.manaraa.com

59

Figure 5-1 A diagram of the communication between an ATTA tool and an AFLEX ML

module.

AI-Assisted Checklist Tool

One of the outcomes of this project is the Checklist Tool that is used to help

completing the checklists that are required by some journals. Currently the process is manual.

However, developing an AI-assisted system that would fill out the checklist items

automatically is not unattainable. In addition to the need for a trained machine learning

algorithm, there must be an abstraction layer above all the guidelines from different journals.

E.g., one guideline might call the first item as "title" and the second item "abstract," but

another guidelines might call the same concepts “title and abstract, item 1a” in a single

checklist item. An abstraction layer would recognize and align these different concepts

underlying the items. If the AI is trained based on the concepts, not the titles of items, then it

could become journal-independent, allowing it to potentially be used across journals or even

other domains and languages.

www.manaraa.com

60

UX Research on Tool Usability

The author designed and created all the tools based on users' needs, with user

experience (UX) and software engineering principles in mind. However, the success and

efficiency of the tools has yet to be verified. In human computer interaction, there are

methods to evaluate user experience. It is recommended to time users as they tag the

documents manually and compare these data with the time required when they accomplish

the same task using ATTA tools. The timing data of users' actions in Tag Tool 1, for

example, is already collected and stored in the AFLEX database.

www.manaraa.com

61

REFERENCES

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New directions

on agile methods: a comparative analysis. In Software Engineering, 2003. Proceedings.

25th International Conference on (pp. 244–254).

Adeva, J. J. G., Atxa, J. M. P., Carrillo, M. U., & Zengotitabengoa, E. A. (2014).

Automatic text classification to support systematic reviews in medicine. Expert Systems

with Applications, 41(4), 1498–1508.

Albert, W., & Tullis, T. (2013). Measuring the user experience: collecting, analyzing,

and presenting usability metrics. Newnes.

Banko, M., & Brill, E. (2001). Scaling to Very Very Large Corpora for Natural

Language Disambiguation. In Proceedings of the 39th Annual Meeting on Association

for Computational Linguistics (pp. 26–33). Stroudsburg, PA, USA: Association for

Computational Linguistics. https://doi.org/10.3115/1073012.1073017

Baxter, K., Courage, C., & Caine, K. (2015). Understanding your users: A practical

guide to user research methods. Morgan Kaufmann.

Boyanov, N. (2005). UMS - User Management System. Retrieved from

http://ums.sourceforge.net/home/

Bui, D. D. A., Del Fiol, G., Hurdle, J. F., & Jonnalagadda, S. (2016). Extractive text

summarization system to aid data extraction from full text in systematic review

development. Journal of Biomedical Informatics, 64, 265–272.

Carlile, P. R. (2002). A pragmatic view of knowledge and boundaries: Boundary objects

in new product development. Organization Science, 13(4), 442–455.

Cotos, E. (2016). Computer-assisted research writing in the disciplines. Adaptive

Educational Technologies for Literacy Instruction, 225–242.

Cotos, E., Huffman, S., & Link, S. (2015). Furthering and applying move/step

constructs: Technology-driven marshalling of Swalesian genre theory for EAP

pedagogy. Journal of English for Academic Purposes, 19, 52–72.

Cotos, E., Huffman, S., & Link, S. (2017). A move/step model for methods sections:

Demonstrating rigour and credibility. English for Specific Purposes, 46, 90–106.

Day, D. S., McHenry, C., Kozierok, R., & Riek, L. (2004). Callisto: A Configurable

Annotation Workbench. In LREC.

www.manaraa.com

62

Dwan, K., Altman, D. G., Arnaiz, J. A., Bloom, J., Chan, A.-W., Cronin, E., … others.

(2008). Systematic review of the empirical evidence of study publication bias and

outcome reporting bias. PloS One, 3(8), e3081.

Fraser, G., & Arcuri, A. (2011). EvoSuite: Automatic Test Suite Generation for Object-

oriented Software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering (pp. 416–419). New

York, NY, USA: ACM. https://doi.org/10.1145/2025113.2025179

Gough, D., & Elbourne, D. (2002). Systematic research synthesis to inform policy,

practice and democratic debate. Social Policy and Society, 1(3), 225–236.

Harmsze, F.-A. P. (2000). A modular structure for scientific articles in an electronic

environment.

Kando, N. (1999). Text structure analysis as a tool to make retrieved documents usable.

In Proceedings of the 4th International Workshop on Information Retrieval with Asian

Languages (pp. 126–135).

Kaur, R., Sidhu, P., & Singh, S. (2016). What failed BIA 10-2474 Phase I clinical trial?

Global speculations and recommendations for future Phase I trials. Journal of

Pharmacology & Pharmacotherapeutics, 7(3), 120–126. https://doi.org/10.4103/0976-

500X.189661

Kruchten, P. (2004). The rational unified process: an introduction. Addison-Wesley

Professional.

Loeliger, J., & McCullough, M. (2012). Version Control with Git: Powerful tools and

techniques for collaborative software development. “ O’Reilly Media, Inc.”

Lukan, D. (2018). PDF File Format: Basic Structure.

Lunn, K. (2003). Software Development Life Cycle. In Software development with

UML (pp. 53–68). Springer.

MacCormick, J. (2011). Nine algorithms that changed the future: The ingenious ideas

that drive today’s computers. Princeton University Press.

Malhotra, R. (2015). A systematic review of machine learning techniques for software

fault prediction. Applied Soft Computing, 27, 504–518.

Marshall, I. J., Kuiper, J., & Wallace, B. C. (2016). RobotReviewer: evaluation of a

system for automatically assessing bias in clinical trials. Journal of the American

Medical Informatics Association, 23(1), 193–201. Retrieved from

http://dx.doi.org/10.1093/jamia/ocv044

www.manaraa.com

63

Matthews, G., Davies, D. R., Stammers, R. B., & Westerman, S. J. (2000). Human

performance: Cognition, stress, and individual differences. Psychology Press.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items

for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal

Medicine, 151(4), 264–269.

Moniruzzaman, A. B. M., & Hossain, S. A. (2013). Nosql database: New era of

databases for big data analytics-classification, characteristics and comparison. ArXiv

Preprint ArXiv:1307.0191.

O’Connor, A. M., Totton, S. C., Cullen, J. N., Ramezani, M., Kalivarapu, V., Yuan, C.,

& Gilbert, S. B. (2018). The study design elements employed by researchers in

preclinical animal experiments from two research domains and implications for

automation of systematic reviews. PloS One, 13(6), e0199441.

O’Connor, A. M., Tsafnat, G., Gilbert, S. B., Thayer, K. A., & Wolfe, M. S. (2018).

Moving toward the automation of the systematic review process: a summary of

discussions at the second meeting of International Collaboration for the Automation of

Systematic Reviews (ICASR). Systematic Reviews, 7(1), 3.

https://doi.org/10.1186/s13643-017-0667-4

Okumura, Y. (2016). Reducing Research Waste Through Good Reporting Practices.

Journal of Epidemiology, 26(8), 397–398. https://doi.org/10.2188/jea.JE20160105

Penzenstadler, B. (2013). What does Sustainability mean in and for Software

Engineering. In Proceedings of the 1st International Conference on ICT for

Sustainability (ICT4S).

Ramezani, M., Kalivarapu, V., Gilbert, S. B., Huffman, S., Cotos, E., & O’Conner, A.

(2017). Rapid Tagging and Reporting for Functional Language Extraction in Scientific

Articles. In Proceedings of the 6th International Workshop on Mining Scientific

Publications (pp. 34–39).

Reller, T. (2016). Elsevier publishing – a look at the numbers, and more. Retrieved

from https://www.elsevier.com/connect/elsevier-publishing-a-look-at-the-numbers-and-

more

Richardson, L., & Ruby, S. (2008). RESTful web services. “ O’Reilly Media, Inc.”

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified modeling language reference

manual, the. Pearson Higher Education.

Ruparelia, N. B. (2010). Software development lifecycle models. ACM SIGSOFT

Software Engineering Notes, 35(3), 8–13.

www.manaraa.com

64

Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 statement: updated

guidelines for reporting parallel group randomised trials. BMC Medicine, 8(1), 18.

Shneiderman, B. (2000). Universal usability. Communications of the ACM, 43(5), 84–

91.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., & Tsujii, J. (2012).

BRAT: a web-based tool for NLP-assisted text annotation. In Proceedings of the

Demonstrations at the 13th Conference of the European Chapter of the Association for

Computational Linguistics (pp. 102–107).

The EQUATOR Network. (n.d.). The EQUATOR Nework. Retrieved from

http://www.equator-network.org/

Thomas, J., McNaught, J., & Ananiadou, S. (2011). Applications of text mining within

systematic reviews. Research Synthesis Methods, 2(1), 1–14.

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing

evidence-informed management knowledge by means of systematic review. British

Journal of Management, 14(3), 207–222.

Tsafnat, G., Glasziou, P., Choong, M. K., Dunn, A., Galgani, F., & Coiera, E. (2014).

Systematic review automation technologies. Systematic Reviews, 3(1), 74.

Uman, L. S. (2011). Systematic reviews and meta-analyses. Journal of the Canadian

Academy of Child and Adolescent Psychiatry = Journal de l’Academie Canadienne de

Psychiatrie de l’enfant et de l’adolescent, 20(1), 57–59. Retrieved from

https://www.ncbi.nlm.nih.gov/pubmed/21286370

Von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke,

J. P., … others. (2007). The Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) statement: guidelines for reporting observational studies.

PLoS Medicine, 4(10), e296.

Wallace, B. C., Kuiper, J., Sharma, A., Zhu, M., & Marshall, I. J. (2016). Extracting

PICO sentences from clinical trial reports using supervised distant supervision. The

Journal of Machine Learning Research, 17(1), 4572–4596.

Wolfe, J. (2002). Annotation technologies: A software and research review. Computers

and Composition, 19(4), 471–497. https://doi.org/10.1016/S8755-4615(02)00144-5

Zhi, J., Garousi-Yusifo\uglu, V., Sun, B., Garousi, G., Shahnewaz, S., & Ruhe, G.

(2015). Cost, benefits and quality of software development documentation: A

systematic mapping. Journal of Systems and Software, 99, 175–198.

	2018
	A software architecture for cloud-based text annotation: The AFLEX Tag Tool Architecture (ATTA)
	Mahmood Ramezani
	Recommended Citation

	tmp.1552402086.pdf.5ncTm

