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ABSTRACT 

Text annotation is a valuable method of adding metadata to an existing text or 

document. However, there is no standard text annotation tool across disciplines, in part 

because of the variety of disciplinary needs. This document presents the AFLEX Tag 

Tool Architecture (ATTA), a modular software system to allow the development of text 

annotation tools across disciplines that vary in user interface according the needs of the 

disciplinary users, but share a common technical back end, ATTA. 

This research describes the development of ATTA, along with the development of 

four different ATTA-based software tools related to text annotation that meet the needs 

of different stakeholders: Tag Tool 1, Tag Tool 2, the Review Tool, and the Checklist 

Tool. All tools are web-based applications that store data to an online database. ATTA-

based tools have been found to be useful not only for performing text annotation as its 

own end goal, but also as a method of data collection for training machine learning 

classifiers that perform automated text analysis. 

. 
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CHAPTER 1.    INTRODUCTION 

Purpose of work 

The primary goal of this work is to develop a modular software architecture for text 

annotation that can be used across disciplines with maximum compatibility and minimal 

software requirements. While people may be familiar with the ability to add comments to 

Microsoft Word documents or PDF files, forms of text annotation, these tools do not meet 

the above goals. This document describes in detail the motivation for this goal, steps taken to 

meet it, and the final resulting software architecture and tools, which offer an efficient way of 

collecting data for automated systematic review. The tools are also responsible for exporting 

data in the requested format with specific desired structure. This architecture was developed 

as part of a project called AFLEX (Automatic Functional Language Extraction), which is 

explained in more detail in Chapter 2. Thus, this paper will refer to the AFLEX Tag Tool 

Architecture (ATTA).  The usage of ATTA is depicted in Figure 1-1.  

 

Figure 1-1 AFLEX Tag Tool Architecture usage demonstration. Users review and tag 

excerpts of multiple documents. Their results are stored and passed to others or serve as 

training data for machine learning algorithms which, in the future, will automatically review 

and tag documents.  

Motivation  

To conduct research on a subject, it is critical to know what has already been done on 

that topic by other people. Conducting new research risks wasting expense and time if it does 
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not use results from previous research. However, it can be difficult to keep track of the 

previous research on a topic. Considering the large number of research publications per year, 

approximately 400,000 in 2015 in Elsevier journals alone (Reller, 2016), significant effort is 

required to find relevant information about a specific subject and to manage it. 

Since the amount of the information is a lot, one solution to manage the information 

is to summarize the reports and make note of the most important parts of the different texts. 

This approach has the potential to make knowledge sharing easier and information 

management more efficient. This technique, which is known as text annotation, has existed 

for a quite long time.  

Historically, medieval authors of manuscripts used margins of manuscripts or the 

interlinear spaces as a forum to debate parts of the text, or to share knowledge (Wolfe, 2002). 

This practice was a critical part of medieval reading so that annotations were usually 

transcribed along with the original text.  

For the purpose of this research, the term “tagging” is used  as a subcategory of 

annotation. Tagging is a method of preparing unstructured text and documents for data 

analysis and pattern recognition. Text tagging usually involves associating predefined 

machine-readable labels known as tags, with a specific part of the original text. A row of 

figures from company's income statement might be tagged as “assets,” for example. A string 

of text transcribed into a medical chart might be tagged as “diagnosis.” The tags can be used 

for indexing texts, categorizing them, or adding metadata to manuscripts. The important 

point is that these tags are usually discipline-specific. For example, the tags that are used by 

medical researchers are likely quite different from linguists, since tags are typically related to 
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the specific topics of interest within a discipline. A modular tool for text annotation should be 

able to support tagging from multiple disciplines. 

Not only are the tags themselves different across disciplines, but also the way the 

annotation is done can be quite different. For instance, some expert reviewers might need to 

select a single excerpt of the text and assign a tag to that part of the text. This is a “one to 

one” mapping, e.g., selecting the title of an article and tagging it “title.”  In other contexts, 

e.g., linguistics, people may want to choose a tag for a language pattern that recurs and select 

as many instances as they find in the text that matches that specific pattern. This is a “one to 

many” mapping, e.g., the tag “prepositional phrase” may apply to many excerpts. There may 

also be “many to many” mappings, in which multiple text excerpts combine to serve as 

evidence of several attributes of the paper. A modular text annotation tool should be able to 

support multiple text annotation behaviors of users.  

Systematic Reviews & The AFLEX Project 

Systematic reviews are a research strategy that has been widely accepted and are used 

to consolidate results from multiple studies within a specific scope, usually to answer a 

research question (Gough & Elbourne, 2002). Systematic reviews often involve text 

annotation (Thomas, McNaught, & Ananiadou, 2011). Using systematic reviews, the process 

of reviewing a large number of research articles can be done in a structured way. Systematic 

reviews introduce a transparent and scientific process which is replicable (Tranfield, Denyer, 

& Smart, 2003). The systematic review process can be done manually or be assisted by 

automation. The partial automation of systematic reviews is further described in Chapter 2.  

The current research arises from efforts on a project called Automated Functional 

Language Extraction (AFLEX), a research effort focused on getting artificial intelligence 

(AI) further involved into the systematic review process. AI-assisted systematic review tools, 
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for example, might be able to read thousands of research articles and select only the ones that 

have specific characteristics that are recognizable by the AI system. To have AI-assisted 

systematic reviews, the AI algorithm first needs to be trained with a large amount of data. 

Generally, the more data is fed to the algorithm, the more accurate its decisions are (Banko & 

Brill, 2001). In the case of systematic reviews, these training data would consist of annotated 

texts with the desired characteristics manually tagged by experts with the desired 

characteristics (O’Connor, Tsafnat, Gilbert, Thayer, & Wolfe, 2018). This need provides the 

motivation for the current research, developing a modular and flexible text annotation 

system. ATTA allows reliable collection of training data for the AI algorithm. 

Based on the literature review in Chapter 2, there is yet another need for ATTA. In 

some disciplines, the lack of any standardized tool for text annotation, as Microsoft® Word® 

is for word processing, poses a significant problem. The absence of a standard text annotation 

tool poses an even greater problem when people from multiple fields need to work to 

together and share data between different applications. This variety in content and usage 

paradigms poses a non-trivial challenge to design a tool which can be used across multiple 

fields. Furthermore, when it comes to the software design, there are many details that should 

be considered. The software should address the needs of its users; however, learning the 

exact user needs requires tedious effort. The practice of understanding user needs is called 

user requirements discovery and is described further below.   

This research presents the AFLEX Tag Tool Architecture, which has enabled the 

creation of four different tools to be used across multiple stakeholders with the ability of data 

exchange among them (Figure 1-2). This architecture consists of three different layers which 

can interact with each other through application data exchange pipelines.  
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Software layers of ATTA 

The lowest layer, and furthest from user interface (UI), is the data access layer. This 

layer is responsible for communicating with the database and provide services to upper 

layers. All the data exchange between the application and database occurs in this layer. 

Database drivers, service providers, and connection managers are in this layer. In ATTA, the 

PHP Data Objects (PDO) extension was used to access the database, which supports Object 

Oriented Programming (OOP) paradigm and adds a great level of security to the application. 

The second layer is the business layer in which all the application logic occurs. The 

business layer is responsible for running the actual code of the application, communicating 

with the data access layer to exchange the data, and to provide services to the presentation 

layer or UI. ATTA uses PHP Hypertext Preprocessor (PHP) as the scripting language to 

function the application.  

Finally, the presentation layer of the application, which is the closest to the users, 

lives at the highest level of the architecture. The users interact with the application using this 

layer. The presentation layer also communicates with the business layer, providing 

functionality for the users of the application. There are four different user interfaces designed 

and implemented using ATTA: Tag Tool 1, Tag Tool 2, Review Tool, and the Checklist 

Tool. Each tool has a different purpose, with different users in mind, though each is related to 

the underlying goal of text annotation.  
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Figure 1-2 Layers of the AFLEX Tag Tool Architecture (ATTA). Data Access Layer (DAC) 

is the farthest from the user and Presentation Layer is the layer that user interacts with. 

Business Layer connects the other two layers and all the program logic is in this layer 

Evaluation Criteria 

During the development of ATTA, the author created specific criteria that could be 

used to evaluate the resulting tools. The criteria included the following design issues, and 

each is described in more detail below. While these criteria are not innovative within 

themselves, this specific combination of criteria is important to note for ATTA. The author 

compiled this list based on user needs, feedback, and interviews that he did during about two 

years of development of this project.  

• Multi-user support 

• Conflict resolution 
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• User-centric UI design 

• Input filetype support 

• Data storage architecture 

• Output filetype support 

• Extensibility 

Multi-User Support 

One of the most important ATTA user needs is the ability to manage each individual 

users’ work in the application. The task of annotation is often accomplished by multiple 

people. If the application cannot keep track of the users and what they have done, one would 

lose the chance of removing biases and normalizing the results, e.g., by comparing and 

integrating data from different people’s work. Also, including this feature can have benefits 

for the users as well, such as session management and ability to continue their work on an 

off-and-on basis over a longer time period. 

Sometimes an application is designed for one purpose only and not to be used by 

multiple people. The problem in the case of this study is very different. With text annotation, 

users believe that they need the same application for different types of text annotation, but 

they actually need a different interaction mechanism for each purpose. This variety of user 

needs makes the design and development of the application more challenging.  

Conflict Resolution 

As it is expected in a multi-user system, there may be cases that different users 

(reviewers) that worked on the same subject would disagree on a subject. In these cases, 

there must be a mechanism to identify the conflicts and be able to come into a final decision. 

For the purpose of ATTA, this function was extremely important as without it, the multi-user 
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support wouldn't be functional at all. The dataset that results from ATTA should be clean and 

reliable, as the machine learning algorithms will be trained based on it. 

User-Centric UI Design  

Reviewing is a tedious task that needs hours of continues monotonous work on 

different texts. Thus, it could be exhausting if the user needs to deal with a UI that is not 

designed based on her needs, as well as the burden of the reviewing task itself. An inefficient 

UI design reduces not only the efficiency, but also leads to more human errors as the user 

gets more fatigued (Matthews, Davies, Stammers, & Westerman, 2000). On the other hand, a 

UI that is designed based on the user needs can be greatly helpful. The learning curve for 

using the latter UI is shorter, and the user feels less cognitive load working with it. As a 

result, the efficiency increases, and human errors is reduced. ATTA UI design was done 

based on its users’ needs that were discovered by close communications between the author 

and application users. 

Input Filetype Support 

In the domain of manuscripts and digital writing, there are different files types, e.g., 

.docx, .tex., .txt., rtf., .pdf, and more. Each of them has its own purposes and structure, and its 

specific way of being handled. Designing an application that would deal with text in general 

demands supporting multiple filetypes, at least the most common ones. However, the list of 

filetypes requiring support is defined by the problem domain and user requirements. In the 

case of ATTA, the most common formats for published papers must be covered, which 

includes .pdf, .doc, .docx, .odt.  

Data Storage Architecture 

To create annotation data from a set of texts, one person or a team must spend 

numerous hours reading the texts and creating annotations. So, it is crucial to protect the data 
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and ensure data integration. The choices of a data storage system can have a great impact on 

the high-level system design. Using a database management system (DBMS) offers 

centralized data management, which ensures data integrity and consistency (MacCormick, 

2011). It also supports multi-user access to data which is very beneficial for the purpose of 

this project.  

Another important consideration is the ability to share data in common formats 

between applications. If the data are stored in a way that they are not exportable to other 

applications, users' interest in that application may be less, because it is not practical for users 

to further process their work. ATTA uses a database data storage system to provide data 

consistency and integrity.  

Output Filetype Support 

Another important requirement is that the application can communicate with other 

applications. The connection would not happen if the application does not support common 

file formats and standard protocols. There are many different applications with different 

purposes and architectures. If they do not follow the standard communication protocols, there 

is a only a remote chance of finding two different applications that would communicate and 

exchange information. Thus, an application that is designed for the purpose of this project 

needs to support common file formats for the output, as well as standard communication 

protocols. ATTA supports common data exchange protocols and file structures such as 

JSON, XML, and CSV.  

Extensibility 

In the Software Development Life Cycle (SDLC) (Lunn, 2003), maintenance, the last 

step in the cycle, plays a critical role. It is important for software to be improved easily. On 

one hand, adding new features to existing software can be painstaking if the software 
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architecture is not designed well. On the other hand, troubleshooting could be near 

impossible if the code is not clear and there are many libraries with no source available for 

debugging. ATTA incorporated open source libraries besides its modular architecture to 

make the application extensible.  

Thesis Organization 

Chapter 2 discusses the AFLEX project and Systematic Reviews (SR), their benefits, 

and the requirements of the process. Also, some of the tools that are used in SRs, as well as 

AI-assisted systems and applications for data collection, is described in Chapter 2. Chapter 3 

includes software development concepts that have been followed during this research. 

Chapter 3 also includes discussions about the importance of the theories behind the 

development of ATTA. In Chapter 4 offers a detailed explanation of the steps that were taken 

during the development of ATTA. Lastly, Chapter 5 discusses the outcomes of this project 

and compares it with a few other similar tools. Also, it includes some of the challenges and 

limits that were posed challenges to ATTA development as well as recommendations for the 

future work.  
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CHAPTER 2.    BACKGROUND 

Introduction  

ATTA spans several important disciplines that are critical to understand to appreciate 

the tools. The tools that have been developed during this project have already been used in 

different situations, but there are more potential applications of the tools in other majors. 

The main purpose of AFLEX is to aid automatic systematic reviews. Systematic 

reviews, as the name suggests, usually involve a detailed search strategy that is designed with 

the purpose of reducing bias by identifying, assessing, and integrating relevant studies on a 

specific topic (Uman, 2011). It is important not to have bias in the reporting because validity 

of meta-analysis can be threatened with bias. Moreover, having bias in a report can make the 

results unreliable for decision making (Dwan et al., 2008). Sometimes systematic reviews 

also involve a meta-analysis component that uses statistical methods to merge the data from 

different studies into one quantitative estimate (Uman, 2011). Data integration could lead to a 

much more efficient decision-making system that would not be possible otherwise.  

One good example of systematic reviews is in the domain of clinical studies. It is 

critical to scientifically verify the results of preclinical studies before conducting human 

clinical trials. The consequences of human experiments based on invalid results could be 

disastrous (Kaur, Sidhu, & Singh, 2016). Death, neurological damage, or multi-organ failure 

of human subjects are just some possible consequences. A systematic review can provide 

evidence based on the entire research field that a given decision is supported by research 

evidence. 

Another example of using systematic review is a review of studies from 1991 to 2013 

that used machine learning for software fault prediction (Malhotra, 2015). Papers were 
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chosen from seven electronic by a target search string and were reviewed using the 

systematic review process, and the author concluded that machine learning techniques can 

predict software fault tendency but that its application is limited. There are many other 

examples of systematic reviews in other fields that make it a valuable process to be 

considered. There is also examples of moving towards automation of SRs (O’Connor, 

Totton, et al., 2018). 

The current pace of the literature production sometimes seems to be too fast to 

manually keep pace with the information production. This mass of scientific publications 

represents a classic data science problem: an overwhelming amount of data that are difficult 

to collect, hard to interpret efficiently, and harder to summarize (Thomas et al., 2011). One 

solution, as it has been accepted in many other domains, is to make use of computers’ 

processing power, for example computer-assisted research writing (Cotos, 2016). However, 

using automation tools in systematic reviews, or other fields, has its own complications and 

challenges (Adeva, Atxa, Carrillo, & Zengotitabengoa, 2014).  

AI in Publishing 

Considering the literature, the author found several applications of AI in the 

systematic review world which are relevant to this project. RobotReviewer (Marshall, 

Kuiper, & Wallace, 2016) is the name of a user interface that is coupled with an artificial 

intelligence classifier that uses machine learning to automatically assess bias in clinical trials. 

RobotReviewer is capable of reading and processing reports in .pdf format and extracting 

supporting text for the risk of bias judgement.  

The results indicate that the AI system is reasonably accurate and only about 7% 

behind human reviewers. The results are quite impressive; however, the authors believe that 

the algorithm is not yet ready to completely take over manual risk of bias assessment. 
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Nevertheless, the AI can significantly reduce the workload of human reviewers in practice. 

That is, using the justifications that are provided in RobotReviewer output, human reviewers 

will need to refer to the full report only if the AI judgments are not acceptable (Marshall et 

al., 2016). 

A different group that included the authors of RobotReview offers another example of 

automatic systematic reviews (Wallace, Kuiper, Sharma, Zhu, & Marshall, 2016). 

Population/Problem, Intervention, Comparator, and Outcome (the PICO criteria) are typically 

defined by systematic reviewers’ authors. All the reports that match these criteria will be 

incorporated and the results from them will be synthesized. However, the procedure of PICO 

elements identification in the full-text reports is a critical yet tedious step in systematic 

review process. Thus, the authors tried to use a machine learning approach to help with this 

step. The results show the efficacy of their algorithm using "supervised distant supervision" 

(Wallace et al., 2016). However, the next steps, which involve the further processing of the 

output of their system, are yet to be developed.  

There are other examples of using AI in systematic reviews for each specific step in 

the systematic review process, which is shown in Figure 2-1. Project AFLEX was designed 

to automate some of these systematic reviews’ steps, specifically filtering based on 

experimental research design, which falls in Steps 7 and 9 of the diagram in Figure 2-1. 

AFLEX 

As it is discussed above, systematic reviews are not produced quick enough to keep 

pace with the literature production rate. Most often, the production cost, availability of the 

necessary knowledge, and timeliness are considered as major reasons for the delay (Tsafnat 

et al., 2014). To automate the systematic review process and overcome the delay, the parts of 

the process that computers can get involved in needs to be identified.  
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The designing process of a systematic review involves two parts: one is technical and 

the other one is creative. It is important to know what part of a systematic review system 

could be automated. Figure 1-2 shows the systematic review steps that are suggested for 

automation. However, not all the processes need to follow the same development plan. The 

automation of some the steps may appear impossible while some of the other ones are 

already automated. The important point is that the development of similar tools is 

incremental (Tsafnat et al., 2014). 

AFLEX is one of the major efforts towards developing a robust AI-assisted automatic 

systematic review system. The ultimate goal of AFLEX is to improve the translation of 

research findings from scientists to society and to enhance communication between 

scientists. AFLEX aims to dramatically advance the systematic review process by processing 

scientific publications and automatically identifying and extracting relevant information from 

them.  

Machine Learning in AFLEX 

Like other developed systems in SR, AFLEX also has a machine learning (ML) 

component, which acts as the artificial intelligence in the system and needs to be trained with 

data. The data collection for the training is not easy. The data must be collected from specific 

sources, be sanitized according to the model, and be fed into the system in the appropriate 

format.  

To be more specific, the papers for the ML component of AFLEX needed to be 

segmented, because a single classifier would not work for all the sections. Each section, e.g., 

Introduction, Methods, Results, needs its own classifier to be trained. While some researchers 

have pursued automated document segmentation (e.g. Bui, Del Fiol, Hurdle, & 

Jonnalagadda, 2016; Harmsze, 2000; Kando, 1999), it is not yet broadly reliable.   
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Furthermore, to identify the important features of an experimental design for SR (one 

purpose of AFLEX), one first need to define the experimental design features themselves. It 

is important to know that these features cannot be expressed simply as keywords. Instead, a 

feature such as “blinded allocation concealment” is an abstract concept which may be 

indicated in a research text via one or more disparate phrases in multiple sentences.  

 

 

Figure 2-1 Steps for creating a systematic review process (Tsafnat et al., 2014) 

https://media.springernature.com/full/springer-static/image/art:10.1186/2046-4053-3-74/MediaObjects/13643_2014_Article_244_Fig1_HTML.jpg
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After text relevant to the targeted abstract concept is identified, the extracted features 

need to be further processed according to language patterns. The language patterns are also 

linguistic features that cannot be identified only by keyword matching. Those features, like 

“temporal phrase,” require semantic understanding of the text. In project AFLEX, a hybrid of 

top-down rules based on linguistics and bottom-up statistical machine learning based on n-

grams has been developed (O’Connor, Totton, et al., 2018). However, as it mentioned before, 

machine learning components need to be trained to be able to identify these features from the 

text. This need is met by the tools developed using ATTA.  

AFLEX Tag Tool Architecture (ATTA) 

The ATTA project was part of the overall AFLEX project. The goal was to enable 

expert reviewers and linguists to identify the desired features from the manuscripts and store 

them in an efficient way, so those data could be used to train the machine learning core. The 

author first explored the literature to find out if there is already an existing tool for this 

purpose but did not find any developed tools that would fit the problem criteria. The author 

mostly looked for the tools for text annotation, as the problem that is described here needs 

the same interaction and dynamics for text annotation. The challenge, however, was that the 

interactions needs of expert reviewers were quite different from linguists, two types of 

stakeholders involved in the AFLEX project.  

Several different text annotation tools have been designed for various contexts. The 

author introduces only a few examples of them to illustrate the current state of the art. BRAT 

(Stenetorp et al., 2012) is a good example of a modern text tagging tool. This tool is designed 

to accept plain .txt files as the input and produces the output in .pdf format or as figures. The 

tool has a clean WYSWYG interface that supports side-by-side comparison of tagged text for 

conflict resolution between two different taggers. The data structure in BRAT is called 
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“standoff,” BRAT's term indicating that it does not store the tagged data within the original 

file. This data structure is suitable for cases that the original file should remain intact. 

However, BRAT does not support .pdf files, which is one of the major formats of scientific 

papers. 

Another example of a powerful tagging tool is Callisto Annotation Workbench (Day, 

McHenry, Kozierok, & Riek, 2004), which is designed for linguists. This tool is open source 

and written in Java, which supports plug-ins from other languages. Callisto Annotation 

Workbench allows data comparison and management. The software follows model-view-

controller (MVC) methodology that relates the user interface to the underlying data models 

in an efficient way. However, the input file type is limited to plain text files, and the user 

interface is cumbersome for users, as it requires multiple clicks from dropdown menus to tag 

a single text. An example of Collisto Annotation Workbench usage is to tag sentences with 

rhetorical move/step constructs (Cotos, Huffman, & Link, 2015). 

Finally, there is the built-in commenting feature of Adobe Acrobat, which allows 

storing annotations in the original .pdf files. The shortcoming with this approach is that it is 

subject to human errors as the user needs to type in the annotation rather than selecting it 

from a list. Also, as the annotations are stored in the file, the process of analyzing them 

requires opening each individual file, which makes it a very time-consuming procedure. In 

the context of the machine learning data collection, Adobe Acrobat built-in commenting 

feature does not provide a good approach as the licensing prevents accessing the stored 

annotation data by third-party applications. Another drawback of this procedure is that 

storing annotation data in the original .pdf files makes it very difficult to collaborate on 
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annotation; the second reviewer would see what the first reviewer has annotated or, she 

would need to make a copy of the file and do the annotation.  

Considering the examples above and many other applications for text annotation, the 

author did not find any application that would cover the system requirements for AFLEX 

data collection. Also, the applications that were discussed above do not support data 

exchange between different steps of systematic reviews. The ATTA project was defined to 

enable multi-discipline text annotation, improving upon shortcomings of the other tools and 

to fill the gap of automation in between some of the systematic reviews’ steps. Furthermore, 

the data structure and communication protocols in ATTA were designed based on the 

common standards which allows other applications to easily connect and use the ATTA 

dataset.  
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CHAPTER 3.    METHODS 

The creation of the ATTA faced several challenges. In this chapter, the user interfaces 

that emerged from ATTA are explored as a complex problem in software engineering. The 

steps taken to come over these challenges were briefly discussed above. In this chapter, the 

rational and justification for the decisions that were made in different stages of the 

development are discussed. Lastly, this chapter includes a high-level summary of what has 

been done during the development of ATTA project.   

ATTA Front-End Development 

There are various Software Development Life Cycle (SDLC) models in software 

engineering (Ruparelia, 2010). According to the needs of this specific application, a spiral 

model was chosen for the development of ATTA. As it is depicted in Figure 3-1, the cycle 

starts with planning.  

Planning 

To plan for software, there should be a need. The software is either a response to that 

need or it could be an improvement or a more efficient way of doing the same task. In the 

case of ATTA, there was a critical need for an application or a suite of tools that would help 

different stakeholders to do their desired text annotation tasks. Thus, we needed to define the 

stakeholders and users. Essentially in the planning phase, we needed to define all the people 

who were involved or will be involved in the software. Linguists, systematic reviewers 

(expert reviewers), usability experts, and sysadmins are “actors” in our software ecosystem.  
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Figure 3-1 Spiral SDLC (Software Development Life Cycle) model that is used in ATTA  

User Needs Discovery 

After defining important stakeholders in the software planning, the user discovery 

phase starts. Using user stories in this phase can help to understand user needs. A user story 

describes the application functions that are needed by a group of stakeholders of the software  

. User stories can be gathered through user role modeling and user stories are specifically 

useful when there is no access to all the users of the application.  

To understand the user needs, it is also beneficial to interview them about their 

expectations. Using a prototype of any type during a stakeholder interview can help to 

understand user needs (Albert & Tullis, 2013). 

It is worth to mention that this step is not considered as a common stage in SDLCs. 

However, the discipline of user-centered design suggests that including this step in any 

product development process will make the process more efficient and decrease the number 

of iterations (Baxter, Courage, & Caine, 2015).  

user needs 
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design
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Design 

After collecting the user needs and expectations, the next step was Design, translating 

the user needs into the software functions. All the coding would be done based on the design 

outputs. However, if an application will have a database, one of the first steps is to design the 

database. A database usually supports all the application data reads and writes and is a 

critical component of the system. Changes to databases can sometimes be expensive in terms 

of time. Thus, it was important to make sure that we chose the right type of the database. 

Currently there are many different types of databases, but at high level, there are two major 

categories: traditional and NoSQL. There are pros and cons for each, but the type of the 

database to be chosen for the application is defined by the data type of the application. 

Usually the data structure and volume define the database type to be used but, NoSQL 

databases are useful when the data quantity is large and a relational model is not required by 

the nature of the data (Moniruzzaman & Hossain, 2013). In ATTA, we chose a relational 

database for our application, which allows secure structured data storage and retrieval.  

It is also valuable to note that sometimes the design process cannot be done in one 

single iteration. Indeed, in most cases, only high-level system designs can be done in one 

iteration. Then, the software functions will be broken up into different function groups or 

modules based on the user needs. In each iteration, one of the modules will be taken care of. 

These partial designs are parts of the system that later will be put together to form the entire 

software.  

Though multiple people contributed to ATTA, it had one primary developer. All the 

iterations of the tools’ development occurred in close communication with users and 

stakeholders. This active communication reduced the number of iterations and increased 

development efficiency. Furthermore, following an agile approach in ATTA development 
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helped to plan and deliver modules in due time, granting stakeholders satisfaction. Agile 

methods in software engineering offered an answer to the business community that sought 

quicker software development processes. Agile methods advocates believe that the focus of 

these methods is simplicity and speed (Abrahamsson, Warsta, Siponen, & Ronkainen, 2003), 

and typically involve multiple iterations of development based on gathering feedback 

frequently. In ATTA development, for instance, the development focus was on the functions 

that were needed immediately to ensure quick delivery. Feedback was collected, and changes 

were made based on the feedback.  

UML modeling 

Software design is a collaborative process and there is a common language to be used 

in this process. UML or Unified Modeling Language (Rumbaugh, Jacobson, & Booch, 2004) 

is widely used in software engineering. This language has diagrams that help developers to 

have a consistent way of thinking and design. These diagrams are the views of the UML 

Model, the model of the software that is built based on the user needs. The practice of putting 

collected data about the user needs into the form of the diagrams enables developers to model 

the software more efficiently. For instance, a use case diagram is shown in Figure 3-2. This 

type of diagram can help developers have a better understanding of translating needs to 

functions.  
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Figure 3-2 A sample use case diagram 

In this diagram, there are different actors (users) that interact with the system. Each 

actor represents a user or a group of the users. The ovals show the ways that users can 

interact with the system. To give an example related to the ATTA, in this diagram, one actor 

can represent our expert reviewers and the other can represent linguists. The use cases are the 

abilities that the users will have in the system. For example, Use Case 3 might be “log in” 

since both actors share that usage, and Use Case 2 might be “identify experimental design.” 

These use cases are all defined based on the user needs and application requirements. 

It must be pointed out that the use case diagram is not the only type of the diagram that is 

used in this step. There are other types of UML diagrams such as the activity diagram, class 

diagram, entity relationship diagrams (ERDs), etc. that can help the design process. In the 

case of ATTA, use case diagrams were sufficient. 

The output of this stage of the SDLC is a model of the system that is translated into 

different features (use cases) which the final product will have.  
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Implementation 

This step is the main step of development, which means all the coding will be done in 

this stage. Given the designs from the previous step, each use case will be translated into a 

software function. Each of these functions are either an application’s feature or an answer to 

a user need. In case of ATTA, the different user types had their own unique ways of 

interacting with the system. Nonetheless, there are some functions that are shared between 

different users, such as log in and log out. The specific use cases for the ATTA are listed in 

Chapter 4. 

Documentation 

One of the most important, yet most time-consuming practices in software 

development is documentation. The cost of documentation seems to have been overlooked in 

the literature (Zhi et al., 2015). In the past few years, before agile methodologies become 

popular, Rational Unified Process (RUP) (Kruchten, 2004) was one the most common 

software processes. The documentation requirements in RUP were significant and for each 

component of the application, there had to be a separate piece of documentation. In contrast, 

agile methodologies removed this much of focus on the documentation.  

Inspired by agile methodologies, the documentation in AFLEX project was done as 

inline comments in the code. The documentations of this type might be less comprehensive, 

but in turn, it required less time to accomplished. Also, this documentation is more closely 

connected to the code, enabling other developers to understand the code faster. 

The output of this step was be a working application with limited number of the 

functions. For the initial iteration, all the functions that should be implemented were in place 

and they worked as intended, according to the developer’s point of view. However, they need 

to be tested with the end users before they can start using the application. 
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Testing 

There are different types of testing that an application can undergo.  There are even 

some cases in software development in which other applications are responsible for testing 

the application under development. EvoSuite is an example that does the automatic tests for 

code which is written in Java (Fraser & Arcuri, 2011). 

In case of ATTA, we chose to use a testing method in which every module of the 

application was tested separately before the delivery and integration with the system. A 

module is a function, or a set of the functions in the software that can be considered as a unit 

and has a specific purpose which could be tested against the requirements.  

The testing process can involve different activities. It could be a part of the user 

interface that needs to be tested, or, it can be a part of the back-end functionality. Sometimes 

there is a condition in which there are modules that depend on each other, but only one of 

them is ready for testing. For example, a part of the user interface might be ready to be 

tested, but the corresponding function in the back-end is not ready yet. To make sure that the 

UI part works correctly, we need to have a response from back-end. In this case, we would 

create a mock-up function that sends a static response to the front end or user interface. This 

way, we can test our UI to make sure that it works and, whenever the back-end function is 

ready, it will be tested and placed in the system.  

In ATTA case, the UI was tested multiple times in different iterations before the 

back-end is implemented into the system. The UI called a function on the server which did 

nothing but to send a response with a delay to test the UI functionality. The delay in the 

mock-up response was implemented to simulate connection issues, so that the UI behavior 

can be assessed in that case. 
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Maintenance 

This step is the final stage to complete a cycle in SDLC. Maintenance involves 

addressing the issues that are discovered during the testing phase. There also might be some 

issues not found during the testing, but after delivery, the users would report those issues. In 

either case, the issues will be resolved in the maintenance phase, and the cycle completes. 

Another cycle is started as soon as one is ready to add more features to the system or 

implement another set of functions. All the new functions will go through the same cycle 

process, starting from planning and, will be in place after the testing is done.  

Occasionally, we need to go back and forth between testing and maintenance. For 

instance, there may be a critical function of the system without which the software would be 

disrupted. In that case, we need to focus on that function and test it as many times as needed 

to ensure its functionality. Also, there may be some other critical functions that are important 

not because the system depends on them entirely, but because of the sensitive information 

that they handle. In that case as well, the cycle might be limited between test and 

maintenance steps until that function runs correctly. 

ATTA Development Summary 

Project ATTA was started in Dec 2016 as a part of the AFLEX project. The 

development was carried on for almost two years. During this time span, development 

meetings were held every week with the individuals who oversaw ATTA. In these meetings 

the progress on the software development was discussed and feedback collected. Also, there 

were monthly meetings with AFLEX team to make sure ATTA is in sync with AFLEX 

requirements. Moreover, there were many occasional meetings, roughly one per month on 

average, with end users of the ATTA tools. Meetings with users usually involved a 

prototype, a UI design, or a tested module of the software that was ready to be tested by the 
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end users of application. These meetings helped significantly with speeding the iterations of 

software development. The total number of stakeholders who were involved in different 

meetings was 12.  

Project ATTA started with the development of the Tag Tool 1. It took almost a 

semester to complete. Meanwhile, during the meetings about Tag Tool 1, the need for Tag 

Tool 2 for linguists was discovered. The development of Tag Tool 2 also took almost a 

semester, which also involved the Review Tool as a needed extension for it. The third 

semester was spent on development of Checklist Tool, which was not initially planned. It 

should be noted that during the development of each new tool in ATTA, the previous ones 

were still under the maintenance iterations for troubleshooting or adding features.   
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CHAPTER 4.     ATTA TOOLS DEVELOPMENT 

In this chapter the actual steps that were taken for the application development are 

explained in detail. This chapter essentially describes the practical implementations of the 

theoretical discussions of software development in the previous chapter.  

ATTA Tools Planning and Design 

The first step of planning process is to identify the problem that the application will 

be designed to solve. The problem of this application was that people needed a dataset of 

annotated research articles for their research, but there was no efficient way of collecting 

data. The data needed to be stored in a structured way that could be exported for various 

purposes.  

Considering this short description of the problem, there is a need for a robust data 

storage mechanism and data-oriented design. Also, there should be a way to enable users to 

store/retrieve data. The part of the application that allows users to interact with the data or 

system in general is usually called GUI (Graphical User Interface) or UI in short.  

AFLEX interviews 

To have a good understanding of the problem domain, the author conducted initial 

interviews with stakeholders who oversee the project. After defining the project scope, the 

interviews with users of the application started. As mentioned above, there were regular 

meetings with stakeholders and the future users of the application. The difference was that 

the meetings with the users usually involved a prototype for feedback or a deliverable to be 

tested. Other stakeholders were updated about the project progress and made sure that the 

project was done within the defined time and cost. Also, they made sure that ATTA met the 

AFLEX requirements.  
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Stakeholders of AFLEX 

To start designing a UI, all the users of the application must be defined. It should be 

noted that the users are stakeholders of the application who directly interact with the system 

through the UI. However, there are other stakeholders who affect the design of the system, 

though they would not interact directly with the application. For ATTA, the following 

stakeholders were defined. 

Expert reviewers 

This group of stakeholders are also users of the application. It means that their 

expectations and needs will affect the design of the UI. To know the user story of this group, 

the author interviewed them. A user story follows. 

Pat, an expert reviewer, wanted to identify text excerpts of an article that provided 

evidence that the article authors used a randomized parallel design. Pat found the text 

“Animals were randomized to treatment groups and induction of transient focal cerebral 

ischemia,” which Pat tagged as “Random.” Next, Pat found the text “The individual 

performing the infarct volume analysis was blinded to treatment group,” which Pat tagged as 

“Blinded Outcome Assessment.” These annotations would be used later by the expert 

reviewer in a meta-analysis to identify papers in a larger corpus that had randomized designs 

with an animal population.  

A summary of expert reviewers’ requirements is listed in Table 4-1. This table is 

compiled based on the information that were collected during the interview sessions. 
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To work on the manuscript, the expert reviewer would need a user interface to store 

and render the manuscripts. The manuscripts are in (portable document format) .pdf format.  

Table 4-1 User requirements for expert reviewers (Ramezani et al., 2017) 

 

Then, they would want to read the manuscript, find the parts of the text that represent 

specific design patterns, select that part of the text, and assign the appropriate predefined 

design patterns (tags) to it. This set of text excerpt and the design patterns (tags) should be 

stored as an annotation record. They would also need to be able to review the annotation 

history and make changes if it is necessary. Annotation records also need to be related to the 

manuscript that they were extracted from.  

# User Functional Requirements System Support & Response 

1 Read PDF and visually locate text. PDF rendered at readable size in browser 

with zooming features 

2 Select text within PDF Selected text highlighted in PDF; plain text 

extracted to Annotation Box sidebar. 

2a Option: select additional non-

contiguous text and they will be 

grouped together 

Additional text highlighted in PDF and plain 

text extracted and added to Annotation Box. 

2b Option: Delete text selection just 

made 

Text passages in Annotation Box can be 

deleted individually 

3 Select one or more tags Tags highlight when selected 

3a Option: deselect one or more tags Selected tags de-highlight when clicked again 

3b Option: add free response 

comment text 

Textbox accepts plain text.  

4 Click OK to complete tagging Text passages and tags stored in database and 

added to Work History in sidebar. Highlights 

clear from PDF. Tags reset to unselected. 

Annotation Box cleared. 

5 Note the time spent on tagging The system records the time taken between 

OK button clicks to measure the time spent to 

tag each text excerpt. It is also possible to 

aggregate the times for a specific document or 

part of the corpus. 
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There are multiple expert reviews that would work on the same set of manuscripts. 

Therefore, the system needs to keep the track of each individual user’s work history and store 

those data in an organized way. This multi-user dynamic can raise a potential conflict 

situation. There are two types of potential disagreement between the reviewers: 

1- Expert reviewers would select the same part of the manuscript that they think 

represent a specific design pattern but, the design patterns are different from one 

reviewer to another. (Reviewer A: Text1 > TagA; Reviewer B: Text1 > TagB) 

2- Expert reviewers would select different parts of the manuscript as the 

representatives of the same design patterns. Reviewer A: Text1 > TagA; Reviewer 

B: Text2 > TagA) 

Considering these conflicts, there must be a module built in to the system that would 

enable expert reviewers to resolve the conflicts. Based on the results of conflict resolution, 

annotation records should be updated to match the final decision. It should be noted that the 

final decision would likely be made by someone else to make sure there is no bias in the 

results.  

Linguists 

This group of stakeholders are also considered as users of the system. Thus, the UI 

design will be affected according to their needs and expectations. This group’s user story is 

as follows. Also, linguists’ requirements are compiled as Table 4-2 based on the information 

collected from the interview sessions. 

Lingu, a linguist, wanted to identify language patterns in the excerpts from the 

articles that have been annotated by expert reviewers. Lingu was presented with this 

sentence: “The individual performing the infarct volume analysis was blinded to treatment 

group.” Lingu selected the “Manner” language pattern and marked “blinded to treatment 
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group” as the evidence of that linguistic pattern. Lingu did not see any repeated records of 

different expert reviewers extracting that same sentence. Also, Lingu had the context 

available from which the expert’s text was extracted in case further analysis was needed. 

Language pattern identification is a part of the text processing to collect data for training 

machine learning algorithms. 

Table 4-2 User requirements of linguists (Ramezani et al., 2017) 

  

The linguists have developed a model based on move/step for methods section 

(Cotos, Huffman, & Link, 2017). Also, like expert reviewers, linguists have tag sets that are 

called language patterns. These tags need to be defined before the process starts. The 

linguists would need to process the annotations even further at the word/phrase level. It 

means that they would need to choose a language pattern (tag) and then select all the 

occurrences in the text excerpt according to that specific language pattern. The occurrences 

should be stored in a structed way, so they can be processed.  

# User Functional Requirements System Support & Response 

1 Read plain text passage. Plain text rendered at readable size in 

browser. 

2 Select tag to work with. Tag highlighted in sidebar.  

3 Select string of text.  Text highlights when selected 

3a Option: Select an additional string 

of text that is not selected. 

Selected tags de-highlight when clicked 

again 

3b Option: Delete highlight from a 

string. 

A selected highlight shows a button for 

deletion.  

4 Click OK to complete tagging Text passages and tag stored in database. 

Highlights clear from text passage. Tag 

changes to “tag used” color and gains 

badge number with count of strings tagged. 
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Moreover, the results need to be reviewed and changed if necessary. There might be 

some language patterns that are missed in the text, so they need to be added later through the 

review user interface.  

System admins 

Unlike two previous stakeholders, this group of stakeholders are not direct users of 

the application. Thus, they would affect the UI design. However, they will affect some 

critical parts of the software. Thorough an informal interview the author found some 

technological limits imposed on the project that would limit the development technologies to 

PHP and jQuery. For example, the available server would not support.Net technologies or 

NodeJS. In addition, other limitations arose throughout the project. For example, there were 

some open source modules that needed to be installed on the server, but because of security 

concerns, the author was not able to do that. The table of system admins’ requirements is 

shown in Table 4-3. 

Table 4-3 System admin requirement for ATTA 

 

Machine learning researchers 

This group of people form the last group of stakeholders involved in AFLEX project. 

These users would not need a clean and customized UI to interact with the system, but rather 

they needed a structured output for their machine learning algorithms. The output needed to 

# Stakeholder Functional Requirements System Support & Response 

1 Linux on servers Cannot use Microsoft technologies like 

ASP.Net, neither NodeJS. 

2 Need language and libraries that are 

familiar.  

Limited to use PHP, jQuery 

3 MySQL database on the server. MySQL database should be used for 

application. 

4 Security concerns  They must be taken care of 
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match their desired format with machine readable structure and the data that they required. 

Thus, there was a need for an output creation (export) module. The output for machine 

learning is usually in plain text format with the structure defined by the destination 

application. A tabular summary of machine learning researchers' requirements is shown in 

Table 4-4. 

Table 4-4 Machine learning researchers' requirements for ATTA 

 

AFLEX Use Case 

According to the stakeholders discussed above, use case diagram of the AFLEX will 

look like Figure 4-1. Note that the only stakeholders that affect the system design will appear 

in the use case diagram since they are considered as actors in the system.  

It should be noted that there is an abstract actor in the use case diagram which is 

called “user.” The “user” actor performs the use cases that are common between other actors 

who refer to it. This abstract actor helps organizing the system functions and modules.   

 

# Stakeholder Functional Requirements System Support & Response 

1 Data format specifications  Data should be exported in the format 

that is expected by ML researchers 

2 Data exchange dynamics It must be discussed to make sure the 

data will be exchanged without any 

problems 

3 Data structure specifications The data needs to be structured to match 

ML researchers' expectations  

4 Security concerns  They must be taken care of 
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Figure 4-1 The use case diagram of AFLEX tag tools 

This diagram helped to design ATTA. After understanding the user needs and 

interpreting them as action verbs in a use case diagram, it was easier to define the functions 

and software modules that were needed in the system.  

User Stories  

Whiteboarding, was used to increase the efficiency of the interviews. Drawing 

pictures may help people to think in a more organized way by creating "boundary objects" 

(Carlile, 2002) that allow people with different backgrounds to discuss a situation with 

common terminology, crossing the boundaries of their disciplines of expertise. In Figure 4-2, 

there are pictures of whiteboarding during the interviews. 
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Figure 4-2 Pictures illustrating whiteboarding techniques during the interview sessions. 

This step was one of the most important stages of the software development. Using 

techniques like whiteboarding not only helped communication with the user, but also gave 

the developer an idea of the users’ expectations. The user may expect the software to look 

like what she draws on the board. Thus, the layout draft of the UI can be defined by the user 

at very first steps of development. 



www.manaraa.com

37 

Wireframes 

Using wireframes, the UI designer can create a fast prototype that will give the user 

the feel of the final product (Albert & Tullis, 2013). In the ATTA project, multiple 

wireframes were created and discussed with the users. The feedback from the users then used 

for the development of the final product. One of the wireframes that used during the design 

process of ATTA project is shown in Figure 4-3.  

Using wireframes made the UI design process smoother and more efficient since the 

communication process with the end user was easier. Also, the interaction with the system 

after implementation was more intuitive for the users because not only it looked familiar, but 

also it was more likely to match the mental model that users had in their minds. 

 

Figure 4-3 A wireframe of ATTA that was used to improve the efficiency of UI design 
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High-Fidelity Prototypes  

Based on the wireframes, the author created high-fidelity prototypes to be tested by 

the end users. High-fidelity prototypes usually are used with mock data just to show the 

functionality of the software to the user. The user can interact with the prototype just as she 

does in the real product, but the data is mocked up.  

These prototypes usually had most of the functional elements of the final UI design. 

The author walked the users though different prototypes that had been developed to make 

sure that they will match the users’ mental models. This step was the last step before 

designing the final product front-end. It should be noted that this cycle of wireframing, 

prototyping, and revising (maintenance) happened multiple times through the SDLC of 

ATTA, as is predicted by agile programming methodologies.  

Version Control  

The management of changes to the application is called version control. Using 

version control, developers not only are able to keep track of the changes in the source code, 

but also are able to revert to a specific version if needed (Loeliger & McCullough, 2012). 

There are different software solutions for version control. The author chose to use git to 

manage the changes of the application. One good reason of choosing git is the ability to 

create branches. By creating branches for the features that are being worked on, the main 

application remains unchanged. After the new feature or bug fixing is done and tested on a 

separate branch, that branch can be merged to the main branch and will affect the final 

software.  

Development/Production Environment 

Once the system is released to be used, it cannot be down for a long time. The 

maintenance should occur seamlessly without interrupting the usage of the system. The 
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development team set up two different environments for the application. These two 

environments were essentially two identical servers with different purposes. 

The first setup was the “development environment.” The goal of this setup is to 

deploy early releases of the application and to test new features. All the new features and 

modules were tested through the development environment before being published on the 

production environment. The user data logged in this environment were useless and were 

subject to removal at any time. Thus, the users felt free to do whatever they wanted with the 

system. It is good to note that this environment acts as high-fidelity prototype, and it is 

usually valuable if system engineers watch the users as they interact with the system at this 

stage. 

The “production environment,” on the other hand, was designed to be used with real 

data. The data in this environment were securely stored and users knew that they were 

interacting with the real system. Any software updates to the application took place at low 

usage times after the updates were tested on the development environment. The production 

environment was supposed to be up and running all the time and all the common 

maintenance practices were done for it. 

The front-end of the system has been discussed, but there are other critical parts of the 

system that need to be described. One of the most important layers of the system is the data 

layer. The data layer is responsible for storing the data and serving other parts of the 

application with data.  

ATTA Database 

One of critical decisions for the system designer is to choose the database type. This 

decision affects all other parts of the system. In the case of ATTA, because data are highly 
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structured, the author decided to use a relational database. Considering the technologies that 

were available on the server, the author chose MySQL database for this application. 

To design the database, all the entities in the application domain were listed. Usually 

each entity had a table counterpart in the database. The database design was carefully 

created, as the application performance highly relies on the database structure. Furthermore, 

database tables were normalized according to the normal forms. The practice of 

normalization restructures the database tables to improve data integrity and reduce data 

redundancy in the database. The results from designing and normalizing the database tables 

are illustrated in Figure 4-4. 

 

Figure 4-4 The ATTA database schema 
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As it is shown in Figure 4-4, there are multiple tables in ATTA database. The “tag_” 

prefix indicates these tables belong to ATTA since there were other tables in the same 

database as well. Each table is responsible for storing a specific data type in the application. 

The excerpts from the texts that were annotated by expert reviewers are stored in “tag_texts” 

table while the document information is stored in “tag_documents.” The “tag_users” table 

contains information about the users of the application, and “tag_unique_strings,” designed 

by Philip Cordova, stores the unique strings that are identified by a de-duplicator module. 

The de-duplicator is explained in detail further below in this chapter.  

AFLEX Tag Tool Architecture Development 

After the designing phase was done, the development started. In the development 

phase, all the coding was done based on the results from the designing step. Considering the 

user needs, the author decided to have the software solution as a web application due to the 

following reasons. 

1- There is no need to install anything on the client computers with a web 

application. Users will need a working Internet connection and a browser to use 

the application.  

2- Since the application is at the early stages of development, it is subject to change 

frequently. Thus, having a web application, which has minimal maintenance 

costs, is desirable.  

According to the technologies available and the limits imposed on the project, the 

author chose PHP as server-side scripting language. No libraries on the server for PHP were 

used. Also, JavaScript was chosen for client-side scripting. Pdf.js was chosen as the library 

for rendering pdf files in a browser, jQuery was chosen for the client-side scripting library, 

and for the front-end, the Twitter Bootstrap CSS library was used.  
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User Management 

The tag tool needed a user management system. User management systems allow 

users to sign up, to be authenticated, and authorized (Boyanov, 2005). Furthermore, user 

identification is a part of the user management that enables the application to track the work 

history of individual users. 

In the case of ATTA, user management is done via Google. Thus, ATTA users need 

to have a Google account to be able to use the system. Iowa State University is partnered 

with Google for the university’s email system and because of that, most ISU community 

members have a Google account already set up.  

ATTA users should be authenticated in Google servers and authorized through 

Google OAuth 2.0 service. The Google authentication user interface integrated into ATTA is 

shown in Figure 4-5. The connection between the application and Google services establishes 

directly after a user logs in to the system. Google sends the profile information that is 

requested by ATTA, so user information such as user id, profile picture URL, etc. is stored in 

the database. It should be noted that the structure of the ATTA database supports 

independent user management as well.  
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Figure 4-5 AFLEX authentication system using Google services 

Tag Tool 1 

The first module of ATTA, which is called Tag Tool 1, is an answer to the expert 

reviewers' needs. They wanted to be able to review a manuscript to identify the design 

patterns that are present in manuscripts. The parts of the text that serve as evidence of a 

design pattern should be extracted and stored as an annotation record. The context of the 

excerpts also is important. Thus, a link to the manuscript also needs to be stored.  

Figure 4-6 shows a screenshot of AFLEX Tag Tool 1 in which the manuscript is 

rendered on the left side panel. On the right panel there is an annotation box which includes 

that predefined design patterns. These patterns are stored in the database and are loaded 
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dynamically as the application loads up. Thus, the patterns could be removed/changed easily. 

Also, it is very easy and fast to add new patterns to the system.  

 

 

Figure 4-6 Screenshot of Tag Tool 1 designed and developed for expert reviewers. 

Furthermore, near the bottom of the right panel there is a comment box that allows 

users to add comments to the annotation records (Figure 4-7, left). The comment is useful for 

sharing the rationale for the tag, so the conflict resolution process will be much easier. At the 

very bottom of the right panel there is work history module UI. This module keeps track of 

individual reviewer’s work (text annotations) and enables reviewers to change or delete their 

work by clicking on the desired record. The red X button for each record will remove the 
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record from the database, as would be expected. A delete confirmation message is also 

included (Figure 4-7, right). It also should be noted that this layout of application was 

developed based on the wireframes and the feedback from the users of the application.  

   

Figure 4-7 Comment box and work history module for Tag Tool 1 (left), and work history 

deletion confirmation message (right). 

Tag Tool 2 

Another module of the ATTA is called Tag Tool 2, which is designed for linguists. 

Essentially this tool will use the output from Tag Tool 1 (annotation records) and will allow 

linguists to process the records at a word or phrase level. The linguists needed the annotation 

records along with the text that they have been extracted from. By processing the annotation 

records, linguists can identify the language patterns in the text excerpts from the Tag Tool 1. 

This tool’s UI is designed similar to Tag Tool 1 to maintain consistency. A screen shot of 

Tag Tool 2 is shown in Figure 4-8.  

Unlike in Tag Tool 1, in which the annotation process starts by selecting an excerpt of 

the PDF text, in Tag Tool 2 the tagging process starts by selecting a language pattern on the 

right. The selected language pattern would be highlighted and the user (linguist) selects all 
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the instances of that particular language pattern in the current annotation record. The user is 

also able to remove the record by hovering over highlighted part of the text and clicking on 

the X icon that appears. 

The left side is divided into two panels. The top left panel shows the annotation 

records, one at a time. The annotations that are shown there are the ones that are refined and 

agreed on by the conflict resolution process. Also, at the bottom of this panel, the total 

number of annotation records and the current record are shown.  

To make the tagging process more efficient and easier for linguists, the annotations 

were displayed one by one using the Next button at the bottom of the top left panel. The 

users also can go back to the previously tagged sentences by using the Previous button. 

Furthermore, the tagging records were seamlessly stored in the database using AJAX, in real 

time as the user (linguist) selected phrases. This approach was discovered through multiple 

iterations to be the best tagging interaction process. 

The bottom left panel renders the original text from which the excerpt is selected. The 

reason of rendering the original text is that linguists needed to be aware of the context of the 

text excerpt. The annotation record is highlighted in the rendered manuscript for 

convenience.  

Like design patterns, language patterns are also dynamically published from the 

database to the right panel. Thus, they can easily be added, removed, or changed. The only 

difference from Tag Tool 1 is that in Tag Tool 2, only one of the language patterns can be 

selected at a time.  
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Figure 4-8 Tag Tool 2, which is designed for linguists. 

Tag Tool 2 Review Tool 

As mentioned in previous chapters, the data that is collected needs to be verified to 

ensure the quality. Sometimes in the verification process, there are some changes to the data 

that need to be made. Also, there might be some missing points or data points that need to be 

removed. All these data manipulations need to be done in the same context as the data is 

collected. Thus, the third user interface is created for this purpose (Figure 4-9).  
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Figure 4-9 A screenshot of the Review Tool, which enables linguists to verify data. 

The Review Tool loads the records from Tag Tool 2 that are stored in the database. 

The tags are color coded to facilitate the review process. The records are grouped by the file 

that they are come from, and each excerpt has its records in the same row. A user can modify 

a specific record by clicking on it. When a record is selected to be modified, it is highlighted 

in the text to show the user the phrase in context.  

De-Duplicator 

The De-Duplicator module is one of the underlying functions of the system which is 

implemented in the business layer of the application. Originally, this module had not been 

planned. However, after delivery of the Tag Tool 2, a new requirement was discovered. The 

problem was the repeated text excerpts in the Tag Tool 2 data inputs. As it is mentioned 
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before, the input of Tag Tool 2 comes from the output of Tag Tool 1, and since there were 

multiple expert reviewers working on the same dataset, duplicates are expected. However, 

linguists did not want to see and tag repeated records, as doing so potentially leads to 

inconsistency, less efficiency, and increasing probability of error.  

To resolve the issue, the De-Duplicator module was developed and verified by Philip 

Cordova, an undergraduate student at Iowa State University. The module uses the SHA-256 

hashing algorithm to identify unique records. As one record is added to the Tag Tool 1 table 

in the database by expert reviewers, the hash is calculated and compared against the rest of 

the hashes to see if it is a unique record. If the added text excerpt is identified as unique, it is 

added to the unique sentences table in the database. Otherwise it is skipped by the de-

duplicator module. A diagram of the system including the de-duplicator subsystem is 

depicted in Figure 4-10. 

 

Figure 4-10 A diagram of the de-duplicator module in relation to ATTA 
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Checklist Tool 

One of the most important and powerful features of AFLEX tag tool that is discussed 

in this document is modularity. Modularity makes ATTA a flexible architecture, allowing it 

to be adopted and used for various purposes with minimal changes and cost. A good example 

of this feature is Checklist Tool, which is also developed by the author. The Checklist Tool 

uses the underlying ATTA structure and the overall goal of text annotation, but with a very 

different type of tool. The need and justification for creating Checklist Tool is as follows. 

In the scientific publication domain, there is a high-impact problem that leads to 

research wastage. There are several reasons that can cause, for instance, roughly 85% of 

healthcare research funding to be wasted. Reasons include poor study design, poor research 

question selection, and poor reporting. In 2010, it was estimated that 200 billion USD was 

the cost of wastage (Okumura, 2016).  

Focusing on reducing the wastage that is due to poor reporting, major medical 

journals implemented reporting guidelines or checklists which specify a minimum set of 

items required for a good report. Over 400 reporting guidelines have been developed so far 

for different types of research (The EQUATOR Network, n.d.). To name but a few, the 

STROBE (Von Elm et al., 2007) statement is developed for observational studies, while 

CONSORT statement is created for randomized controlled trials (Schulz, Altman, & Moher, 

2010), and the PRISMA statement for systematic reviews (Moher, Liberati, Tetzlaff, & 

Altman, 2009).  

Even though these guidelines have helped reduce wastage, the implementation of a 

system to use these guidelines has not been convenient. For instance, if someone wants to 

publish in one of the journals that require completed checklist, she would need to download 
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the checklist (in .pdf or .docx format), complete it (either by printing it and handwriting or 

filling up the .docx version), convert it to .pdf format, and finally upload it along with the 

manuscript. This process is tedious and frustrating and adds to the burden of writing the 

manuscript itself. 

Considering the flaws in the checklist completion process, the AFLEX team designed 

and implemented an innovative solution that makes the process much more efficient and user 

friendly. The solution involves adopting ATTA to the problem needs and creating a new tool 

that helps checklist completion, the Checklist Tool. Using the Checklist Tool, a user uploads 

her manuscript to the system, completes the checklist using the tool, and downloads the .pdf 

output that is generated by the system. The output of the Checklist Tool is structured and laid 

out to be ready to be uploaded to the desired journal. 

The Checklist Tool uses a similar web interface as the other AFLEX Tag Tools do. 

Also, the database and layers of the application are the same as AFLEX tag tools. Despite 

this, there are significant differences in the user interaction, purpose, and the output of the 

Checklist Tool and the Tag Tools. A screenshot of the Checklist Tool is shown in Figure 

4-11.  

One possible user scenario for the checklist tool is when a user wants to upload his 

manuscript to a journal that needs a completed checklist. After finalizing his report, he goes 

to the checklist tool, uploads the manuscript and selects the desired guideline from the top 

left corner. The corresponding items of the selected guideline appear on the right panel. If the 

user is unsure of what an item requests, he can mouse over the "?" icon to see a tooltip about 

that item. The user then selects and opens an item from the checklist on the right panel and 

finds the corresponding text in the manuscript. By selecting the related part of the text, it is 
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copied in the box under the selected/open item. The user can change the copied text, but the 

page numbers from the selection will automatically be added to the final report.  For 

example, to complete the guideline item ABSTRACT, the user would selecte the text of the 

abstract in the left panel, and that text would be transferred to the ABSTRACT item in the 

right panel, along with the page number from the original document.  

 

 

Figure 4-11 A screenshot of the Checklist Tool 

After completing the checklist, the user would use the green button on the top right 

corner that would generate the .pdf output in the selected guideline’s layout and structure. A 

quick validation occurs as the user clicks on export button to let the user know about the 

checklist items that are completed and the items that are left empty. The titles change color to 
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red and an indicator appears on the list items to make the empty ones stand out. The output 

would be downloaded to the user’s computer and he would be able to upload it with his 

manuscript. A screen shot of a part of the output of Checklist Tool is shown in Figure 4-12. 

 

Figure 4-12 A screen shot of Checklist Tool output, a PDF file.  

File format conversion 

The Checklist Tool was designed to facilitate the checklist completion, but it 

supported only .pdf files at the initial launch. Different journals require different file formats 

for the submission. Thus, the checklist tool needed to support common file formats that are 

needed by different journals. After discovering this need, Vlad Sukhoy, a member of AFLEX 

development team, created a solution for the problem. He used Google Drive Services as a 

proxy for the Checklist Tool that would convert most document file formats (.doc, .docx, 

.dot, .html, .odt, .rtf, .txt) to .pdf prior to being rendered in Checklist Tool. Using a third-
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party converter module also directs the liability of storing manuscript files to the user’s 

private Google account. 

AFLEX Tag Tool Maintenance 

To build an application is a complicated and time-consuming task. However, if the 

code is not well written, then the maintenance can be quite difficult. Anecdotally, developers 

can often cite from their experience examples of software that were not worth the 

maintenance and that needed to be rebuilt from the scratch, only because the original 

developer did not follow best practices in coding.  

Documentation 

The code documentation was all done inside the code itself as inline or block 

comments, instead of in separate documents. This approach will help other developers to 

understand the code more easily and quickly. Also, it did not require a long time and a 

separate effort to do that. Documentation was done while the application is being developed, 

ensuring accuracy and efficiency. 
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CHAPTER 5.    DISCUSSION 

This chapter is dedicated to discussions on the ATTA development, outcomes, 

challenges, and limits that the author encountered during the project. During this project, a 

modular user interface was produced. All the modules use the same database, so the data can 

easily be exchanged between them. Although each of the UIs were tailored specifically for 

the intended users, they have other potential applications across disciplines.  

Development 

There are some special considerations to which the author attended during the 

development of this project. These considerations are not necessarily common practices in 

software development, though the author believes that they are valuable to be considered in 

every software development process. 

 Sustainable Design In ATTA 

The author suggests that people consider sustainability in every job position they are 

in. However, in traditional software development, sustainability has often been overlooked 

(Penzenstadler, 2013). Practices that help save the environment are always appreciated. 

Considering the ubiquitousness of software applications, these practices will have a huge 

impact on the environment. There are many sustainable activities that could be done during 

software development, but the following was the one that the author paid attention to during 

this project.  

In general, everything that makes a system work more efficiently can be considered 

as a sustainability practice. For instance, if an application is optimized in a way that needs 

less processing power to run, it means that the whole system consumes less energy to 

produce same results, which leads to saving the environment.  
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User interface design considerations 

In general, monitors consume more power to render light pictures than dark ones. 

Thus, using darker colors and patterns, if it is possible, can save power while outputting the 

same results. Throughout this project, the author not only paid attention to these details in 

user interface design, but also considered people with color blindness. To follow the 

principles of universal design (Shneiderman, 2000), people with disabilities should always be 

considered. The author chose colors that are usable for people with color blindness, in the 

darker part of the color palette. Also, the interface includes an additional text-based indicator 

beyond color to communicate with the user. 

Challenges 

In this section the challenges that were faced during this project are discussed. Some 

of them are general challenges and some of them are specific to tools created with ATTA.  

The .pdf File Type 

The PDF (portable document format) file format may be used for text, images, and 

multimedia elements to be presented (Lukan, 2018).However, when it comes to automatic 

systematic reviews in which the text needs to be read by a machine, it is difficult to extract 

the text from a .pdf file without any errors. The reason is that first, there are multiple versions 

of .pdf file types that are different in their internal structure and, second, the text is not stored 

the way it is rendered (Lukan, 2018). For example, to be able to extract a sentence, one needs 

to find the position of the letters that formed the sentence and put them together. If a sentence 

spans multiple pages in a .pdf file, for example, the first section and the second section of the 

sentence are likely stored in very different places internally within the file.  

Using a client-side library like PDF.js helped this process significantly as the library 

not only renders the .pdf file as HTML, but also has some functions that extract a selected 
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part of the text from that .pdf file. Given that this process is still not robust, there are some 

heuristics that are implanted in the ATTA code to take care of problems like line breaks, 

spaces, etc. It must be mentioned that there is still a small chance that when a user selects a 

text excerpt, the output could be very different. Also, some of the .pdf files are not 

compatible with the PDF.js library and as a result, they cannot be rendered at all.  

Evaluation 

The evaluation criteria for these types of tools were mentioned in Chapter 1 of this 

document. The author evaluated the AFLEX tag tools in comparison with other tools that 

were discussed in Chapter 2 against the criteria.  

Table 5-1 A comparison between AFLEX tag tools and similar tools in the literature. N/A 

indicates that not enough information was available for evaluation.  

 Multi-

user 

support 

User 

centric 

UI 

design 

Conflict 

resolution 

system 

Input 

file 

type 

support 

Output 

file 

types 

Data 

storage 

type 

Extensible 

/ support 

plug-ins 

AFLEX tag 

tools 
YES YES YES 

.pdf, 

.doc, 

.docx, 

.dot, 

.html, 

.odt, 

.rtf, .txt 

.csv, 

.xml, 

.json 

separate 

from file 
YES 

BRAT YES N/A YES .txt N/A 
separate 

from file 
NO 

Callisto 

Annotation 

Workbench 

NO N/A NO .txt 
.pdf, 

figures 

separate 

from file 
YES 

Adobe 

Acrobat 
N/A N/A NO .pdf .pdf 

In the 

file  
NO 

 



www.manaraa.com

58 

Future Work 

Machine Learning Implementation 

As it is noted before, ATTA is a part of the project AFLEX which involves natural 

language processing using machine learning algorithms. The tools resulting from ATTA 

helped collect data for the purpose of AFLEX. However, currently the machine learning part 

is not finalized and still is under development. The machine learning part can be developed in 

parallel to the data collection. The important point is that the data should be stored and 

exchanged in the way that the machine learning components needs it, so that ATTA serves as 

a smooth pipeline to future text processing tools.  

Data exchange pipeline 

In this document, it has been mentioned multiple times that all the user interfaces of 

ATTA tools share the same database. Thus, there is no problem of exchanging data between 

those interfaces. However, to be able to export data to be used by other applications such as 

machine learning algorithms, there must be a pipeline that would enable applications to 

connect and exchange data. The most common way is to create a webservice that has access 

to the database and would expose some end points for other applications to connect to them.  

There are standard ways of creating a web service. The author recommends creating a 

RESTful web service (Richardson & Ruby, 2008) that would be called by the machine 

algorithm for the data exchange. A diagram of this architecture is shown in Figure 5-1. It also 

should be noted, as it is mentioned in the diagram, that the RESTful service will only support 

read operations, meaning that it would not allow changes to the data.  
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Figure 5-1 A diagram of the communication between an ATTA tool and an AFLEX ML 

module. 

AI-Assisted Checklist Tool 

One of the outcomes of this project is the Checklist Tool that is used to help 

completing the checklists that are required by some journals. Currently the process is manual. 

However, developing an AI-assisted system that would fill out the checklist items 

automatically is not unattainable. In addition to the need for a trained machine learning 

algorithm, there must be an abstraction layer above all the guidelines from different journals. 

E.g., one guideline might call the first item as "title" and the second item "abstract," but 

another guidelines might call the same concepts “title and abstract, item 1a” in a single 

checklist item.  An abstraction layer would recognize and align these different concepts 

underlying the items. If the AI is trained based on the concepts, not the titles of items, then it 

could become journal-independent, allowing it to potentially be used across journals or even 

other domains and languages.  
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UX Research on Tool Usability 

The author designed and created all the tools based on users' needs, with user 

experience (UX) and software engineering principles in mind. However, the success and 

efficiency of the tools has yet to be verified. In human computer interaction, there are 

methods to evaluate user experience. It is recommended to time users as they tag the 

documents manually and compare these data with the time required when they accomplish 

the same task using ATTA tools. The timing data of users' actions in Tag Tool 1, for 

example, is already collected and stored in the AFLEX database. 
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